IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04673-9.html
   My bibliography  Save this article

A flexible robust model for blood supply chain network design problem

Author

Listed:
  • Soheyl Khalilpourazari

    (Concordia University
    Logistics and Transportation (CIRRELT))

  • Hossein Hashemi Doulabi

    (Concordia University
    Logistics and Transportation (CIRRELT))

Abstract

World Health Organization (WHO) declared COVID-19 as a pandemic On March 12, 2020. Up to January 13, 2022, 320,944,953 cases of infection and 5,539,160 deaths have been reported worldwide. COVID-19 has negatively impacted the blood supply chain by drastically reducing blood donation. Therefore, developing models to design effective blood supply chains in emergencies is essential. This research offers a novel multi-objective Transportation-Location-Inventory-Routing (TLIR) formulation for an emergency blood supply chain network design problem. We answer questions regarding strategic, operational, and tactical decisions considering disruption in the network and blood shelf-life. Since, in real-world applications, the parameters of the proposed mathematical formulation are uncertain, two flexible uncertain models are proposed to provide risk-averse and robust solutions for the problem. We applied the proposed formulations in a case study. Under various scenarios and realizations, we show that the offered robust model handles uncertainties more efficiently and finds solutions that have significantly lower costs and delivery time. To make a reliable conclusion, we performed extensive worst-case analyses to demonstrate the robustness of the results. In the end, we provide critical managerial insights to enhance the effectiveness of the supply chain.

Suggested Citation

  • Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2023. "A flexible robust model for blood supply chain network design problem," Annals of Operations Research, Springer, vol. 328(1), pages 701-726, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04673-9
    DOI: 10.1007/s10479-022-04673-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04673-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04673-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    2. Mohamadreza Fazli-Khalaf & Soheyl Khalilpourazari & Mohammad Mohammadi, 2019. "Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design," Annals of Operations Research, Springer, vol. 283(1), pages 1079-1109, December.
    3. Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
    4. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    5. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "Heuristic approaches for solid transportation-p-facility location problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 939-961, September.
    6. Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
    7. Ana Margarida Araújo & Daniel Santos & Inês Marques & Ana Barbosa-Povoa, 2020. "Blood supply chain: a two-stage approach for tactical and operational planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1023-1053, December.
    8. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    9. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    10. Ghelichi, Zabih & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study," Energy, Elsevier, vol. 156(C), pages 661-687.
    11. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "An exact and a heuristic approach for the transportation-p-facility location problem," Computational Management Science, Springer, vol. 17(3), pages 389-407, October.
    12. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Safaei & Khalid Yahya & Saleh Al Dawsari, 2024. "A Comprehensive Evaluation Model for Sustainable Supply Chain Capabilities in the Energy Sector," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    2. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    3. Rizgar R. Zebari & Gheyath M. Zebari & Adel Al-zebari & Marwan Aziz Mohammed, 2025. "LSTM-XGBoost: An Ensemble Model for Blood Demand Distribution Forecasting – A Case Study in Zakho City, Kurdistan Region, Iraq," SN Operations Research Forum, Springer, vol. 6(1), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    2. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    3. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.
    4. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
    5. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Seyed Amin Seyfi-Shishavan & Yaser Donyatalab & Elmira Farrokhizadeh & Sule Itır Satoglu, 2023. "A fuzzy optimization model for designing an efficient blood supply chain network under uncertainty and disruption," Annals of Operations Research, Springer, vol. 331(1), pages 447-501, December.
    7. M. Rezaei Kallaj & M. Hasannia Kolaee & S. M. J. Mirzapour Al-e-hashem, 2023. "Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups," Annals of Operations Research, Springer, vol. 321(1), pages 783-811, February.
    8. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    10. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    11. Ali Fallahi & Seyed Alireza Mousavian Anaraki & Hadi Mokhtari & Seyed Taghi Akhavan Niaki, 2024. "Blood plasma supply chain planning to respond COVID-19 pandemic: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 1965-2016, January.
    12. Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
    13. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    14. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani & Jeremy Mattson, 2023. "Robust possibilistic programming to design a closed-loop blood supply chain network considering service-level maximization and lateral resupply," Annals of Operations Research, Springer, vol. 328(1), pages 859-901, September.
    15. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    16. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    17. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    18. Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.
    19. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    20. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04673-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.