IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v6y2025i1d10.1007_s43069-024-00413-w.html
   My bibliography  Save this article

LSTM-XGBoost: An Ensemble Model for Blood Demand Distribution Forecasting – A Case Study in Zakho City, Kurdistan Region, Iraq

Author

Listed:
  • Rizgar R. Zebari

    (Knowledge University)

  • Gheyath M. Zebari

    (Akre University for Applied Sciences)

  • Adel Al-zebari

    (Akre University for Applied Sciences)

  • Marwan Aziz Mohammed

    (Knowledge University)

Abstract

A safe and adequate blood supply is essential for healthcare systems to function effectively. Accurately forecasting blood demand plays a key role in efficient inventory management and resource allocation. Traditional forecasting methods, like moving averages and ARIMA models, often fall short due to the complexity of factors influencing blood demand. This study introduces an innovative hybrid ensemble model that combines Long Short-Term Memory (LSTM) networks with XGBoost, harnessing their combined strengths to enhance forecasting accuracy. By analyzing blood donation data from the Zakho Blood Bank (January 1, 2015—July 22, 2022), the model outperforms individual LSTM and XGBoost models, excelling in metrics such as Mean Square Error (MSE) and Mean Absolute Error (MAE). These findings underscore the potential of advanced machine learning techniques to improve healthcare supply chain management and ensure the timely availability of critical blood supplies.

Suggested Citation

  • Rizgar R. Zebari & Gheyath M. Zebari & Adel Al-zebari & Marwan Aziz Mohammed, 2025. "LSTM-XGBoost: An Ensemble Model for Blood Demand Distribution Forecasting – A Case Study in Zakho City, Kurdistan Region, Iraq," SN Operations Research Forum, Springer, vol. 6(1), pages 1-22, March.
  • Handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00413-w
    DOI: 10.1007/s43069-024-00413-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00413-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00413-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Yanqing & Edwards, John S. & Dwivedi, Yogesh K, 2019. "Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda," International Journal of Information Management, Elsevier, vol. 48(C), pages 63-71.
    2. Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2023. "A flexible robust model for blood supply chain network design problem," Annals of Operations Research, Springer, vol. 328(1), pages 701-726, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latinovic, Zoran & Chatterjee, Sharmila C., 2022. "Achieving the promise of AI and ML in delivering economic and relational customer value in B2B," Journal of Business Research, Elsevier, vol. 144(C), pages 966-974.
    2. Fawwaz Tawfiq Awamleh & Ala Nihad Bustami, 2022. "Examine the Mediating Role of the Information Technology Capabilities on the Relationship Between Artificial Intelligence and Competitive Advantage During the COVID-19 Pandemic," SAGE Open, , vol. 12(3), pages 21582440221, August.
    3. Garcia-Murillo, Martha & MacInnes, Ian, 2023. "The promise and perils of artificial intelligence: Overcoming the odds," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277963, International Telecommunications Society (ITS).
    4. Tieli Wang & Dingliang Wang & Zhiwei Zeng, 2024. "Research on the Construction and Measurement of Digital Governance Level System of County Rural Areas in China—Empirical Analysis Based on Entropy Weight TOPSIS Model," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
    5. Kanungo, Rama Prasad & Gupta, Suraksha & Patel, Parth & Prikshat, Verma & Liu, Rui, 2022. "Digital consumption and socio-normative vulnerability," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Zerfaß, Ansgar & Stieglitz, Stefan & Clausen, Sünje & Ziegele, Daniel & Berger, Karen, 2023. "Communications Trend Radar 2023. State revival, scarcity management, unimagination, augmented workflows & parallel worlds," Communication Insights 17, Academic Society for Management & Communication – An initiative of the Günter Thiele Foundation, Leipzig.
    7. Luca Grilli & Sergio Mariotti & Riccardo Marzano, 2024. "Artificial intelligence and shapeshifting capitalism," Journal of Evolutionary Economics, Springer, vol. 34(2), pages 303-318, April.
    8. Zhang, Yaozhi & Prebensen, Nina, 2023. "Co-creating with ChatGPT for tourism marketing materials," OSF Preprints nvbyj, Center for Open Science.
    9. Varun Nayyar, 2022. "Reviewing the impact of digital migration on the consumer buying journey with robust measurement of PLS‐SEM and R Studio," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 542-556, May.
    10. Bosse, Douglas & Thompson, Steven & Ekman, Peter, 2023. "In consilium apparatus: Artificial intelligence, stakeholder reciprocity, and firm performance," Journal of Business Research, Elsevier, vol. 155(PA).
    11. Leal Filho, Walter & Wall, Tony & Rui Mucova, Serafino Afonso & Nagy, Gustavo J. & Balogun, Abdul-Lateef & Luetz, Johannes M. & Ng, Artie W. & Kovaleva, Marina & Safiul Azam, Fardous Mohammad & Alves,, 2022. "Deploying artificial intelligence for climate change adaptation," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    12. Mohammad Hossein Ronaghi, 2023. "The influence of artificial intelligence adoption on circular economy practices in manufacturing industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14355-14380, December.
    13. Marc Schmitt, 2022. "Deep Learning vs. Gradient Boosting: Benchmarking state-of-the-art machine learning algorithms for credit scoring," Papers 2205.10535, arXiv.org.
    14. Nam, Jinyoung & Jung, Yoonhyuk & Kim, Junghwan, 2024. "Understandings of the AI business ecosystem in South Korea: AI startups’ perspective," Telecommunications Policy, Elsevier, vol. 48(6).
    15. Jameel, Alaa S. & Harjan, Sinan Abdullah & Ahmad, Abd Rahman, 2023. "Behavioral Intentions to use Artificial Intelligence Among Managers in Small and Medium Enterprises," OSF Preprints w69yh, Center for Open Science.
    16. Sayed Fayaz Ahmad & Heesup Han & Muhammad Mansoor Alam & Mohd. Khairul Rehmat & Muhammad Irshad & Marcelo Arraño-Muñoz & Antonio Ariza-Montes, 2023. "Impact of artificial intelligence on human loss in decision making, laziness and safety in education," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    17. Hao, Xinyue & Demir, Emrah & Eyers, Daniel, 2024. "Exploring collaborative decision-making: A quasi-experimental study of human and Generative AI interaction," Technology in Society, Elsevier, vol. 78(C).
    18. Li, Yu & Zhong, Huiyi & Tong, Qiye, 2024. "Artificial intelligence, dynamic capabilities, and corporate financial asset allocation," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    19. repec:bfv:sbsrec:001 is not listed on IDEAS
    20. Jean-Marie John-Mathews, 2022. "Some critical and ethical perspectives on the empirical turn of AI interpretability," Post-Print hal-03395823, HAL.
    21. Milad Mirbabaie & Felix Brünker & Nicholas R. J. Möllmann Frick & Stefan Stieglitz, 2022. "The rise of artificial intelligence – understanding the AI identity threat at the workplace," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 73-99, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-024-00413-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.