IDEAS home Printed from
   My bibliography  Save this article

On same-realization prediction in an infinite-order autoregressive process


  • Ing, Ching-Kang
  • Wei, Ching-Zong


Let observations come from an infinite-order autoregressive (AR) process. For predicting the future of the observed time series (referred to as the same-realization prediction), we use the least-squares predictor obtained by fitting a finite-order AR model. We also allow the order to become infinite as the number of observations does in order to obtain a better approximation. Moment bounds for the inverse sample covariance matrix with an increasing dimension are established under various conditions. We then apply these results to obtain an asymptotic expression for the mean-squared prediction error of the least-squares predictor in same-realization and increasing-order settings. The second-order term of this expression is the sum of two terms which measure both the goodness of fit and model complexity. It forms the foundation for a companion paper by Ing and Wei (Order selection for same-realization predictions in autoregressive processes, Technical report C-00-09, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC, 2000) which provides the first theoretical verification that AIC is asymptotically efficient for same-realization predictions. Finally, some comparisons between the least-squares predictor and the ridge regression predictor are also given.

Suggested Citation

  • Ing, Ching-Kang & Wei, Ching-Zong, 2003. "On same-realization prediction in an infinite-order autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 130-155, April.
  • Handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:130-155

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    2. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(02), pages 254-279, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    2. Liu, Chu-An & Tao, Jing, 2016. "Model selection and model averaging in nonparametric instrumental variables models," MPRA Paper 69492, University Library of Munich, Germany.
    3. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    4. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, Elsevier.
    5. Jirak, Moritz, 2014. "Simultaneous confidence bands for sequential autoregressive fitting," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 130-149.
    6. Greenaway-McGrevy, Ryan, 2015. "Evaluating panel data forecasts under independent realization," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 108-125.
    7. Schorfheide, Frank, 2005. "VAR forecasting under misspecification," Journal of Econometrics, Elsevier, vol. 128(1), pages 99-136, September.
    8. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    9. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.
    10. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    11. Ing, Ching-Kang & Sin, Chor-yiu & Yu, Shu-Hui, 2012. "Model selection for integrated autoregressive processes of infinite order," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 57-71.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:130-155. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.