IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i1d10.1007_s10463-023-00878-2.html
   My bibliography  Save this article

Gaussian quasi-information criteria for ergodic Lévy driven SDE

Author

Listed:
  • Shoichi Eguchi

    (Osaka Institute of Technology)

  • Hiroki Masuda

    (Kyushu University
    The University of Tokyo)

Abstract

We consider relative model comparison for the parametric coefficients of an ergodic Lévy driven model observed at high-frequency. Our asymptotics is based on the fully explicit two-stage Gaussian quasi-likelihood function (GQLF) of the Euler-approximation type. For selections of the scale and drift coefficients, we propose explicit Gaussian quasi-AIC and Gaussian quasi-BIC statistics through the stepwise inference procedure, and prove their asymptotic properties. In particular, we show that the mixed-rates structure of the joint GQLF, which does not emerge in the case of diffusions, gives rise to the non-standard forms of the regularization terms in the selection of the scale coefficient, quantitatively clarifying the relation between estimation precision and sampling frequency. Also shown is that the stepwise strategies are essential for both the tractable forms of the regularization terms and the derivation of the asymptotic properties of the Gaussian quasi-information criteria. Numerical experiments are given to illustrate our theoretical findings.

Suggested Citation

  • Shoichi Eguchi & Hiroki Masuda, 2024. "Gaussian quasi-information criteria for ergodic Lévy driven SDE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(1), pages 111-157, February.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:1:d:10.1007_s10463-023-00878-2
    DOI: 10.1007/s10463-023-00878-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00878-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00878-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    2. Shoichi Eguchi & Yuma Uehara, 2021. "Schwartz‐type model selection for ergodic stochastic differential equation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 950-968, September.
    3. Brouste, Alexandre & Fukasawa, Masaaki & Hino, Hideitsu & Iacus, Stefano & Kamatani, Kengo & Koike, Yuta & Masuda, Hiroki & Nomura, Ryosuke & Ogihara, Teppei & Shimuzu, Yasutaka & Uchida, Masayuki & Y, 2014. "The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i04).
    4. Masayuki Uchida, 2010. "Contrast-based information criterion for ergodic diffusion processes from discrete observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 161-187, February.
    5. Findley, David F. & Wei, Ching-Zong, 2002. "AIC, Overfitting Principles, and the Boundedness of Moments of Inverse Matrices for Vector Autotregressions and Related Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 415-450, November.
    6. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
    7. Ajay Jasra & Kengo Kamatani & Hiroki Masuda, 2019. "Bayesian inference for stable Lévy–driven stochastic differential equations with high‐frequency data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 545-574, June.
    8. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoichi Eguchi & Hiroki Masuda, 2019. "Data driven time scale in Gaussian quasi-likelihood inference," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 383-430, October.
    2. Kengo Kamatani & Masayuki Uchida, 2015. "Hybrid multi-step estimators for stochastic differential equations based on sampled data," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 177-204, July.
    3. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for small diffusion processes based on reduced data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 745-773, October.
    4. Shoichi Eguchi & Yuma Uehara, 2021. "Schwartz‐type model selection for ergodic stochastic differential equation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 950-968, September.
    5. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
    6. Yoshida, Nakahiro, 2025. "Quasi-likelihood analysis for nonlinear stochastic processes," Econometrics and Statistics, Elsevier, vol. 33(C), pages 246-257.
    7. Uchida, Masayuki & Yoshida, Nakahiro, 2013. "Quasi likelihood analysis of volatility and nondegeneracy of statistical random field," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2851-2876.
    8. Yusuke Shimizu, 2017. "Moment convergence of regularized least-squares estimator for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1141-1154, October.
    9. Yusuke Kaino & Masayuki Uchida, 2018. "Hybrid estimators for stochastic differential equations from reduced data," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 435-454, July.
    10. Shogo H. Nakakita & Yusuke Kaino & Masayuki Uchida, 2021. "Quasi-likelihood analysis and Bayes-type estimators of an ergodic diffusion plus noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 177-225, February.
    11. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    12. Nakahiro Yoshida, 2025. "Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(1), pages 1-24, February.
    13. Takayuki Fujii & Masayuki Uchida, 2014. "AIC type statistics for discretely observed ergodic diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 267-282, October.
    14. Uehara, Yuma, 2019. "Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4051-4081.
    15. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.
    16. Yusuke Kaino & Shogo H. Nakakita & Masayuki Uchida, 2020. "Hybrid estimation for ergodic diffusion processes based on noisy discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 171-198, April.
    17. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    18. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
    19. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    20. O. J. Boxma & E. J. Cahen & D. Koops & M. Mandjes, 2019. "Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 125-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:1:d:10.1007_s10463-023-00878-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.