IDEAS home Printed from
   My bibliography  Save this article

More Higher-Order Efficiency: Concentration Probability


  • Kano, Yutaka


Based on concentration probability of estimators about a true parameter, third-order asymptotic efficiency of the first-order bias-adjusted MLE within the class of first-order bias-adjusted estimators has been well established in a variety of probability models. In this paper we consider the class of second-order bias-adjusted Fisher consistent estimators of a structural parameter vector on the basis of an i.i.d. sample drawn from a curved exponential-type distribution, and study the asymptotic concentration probability, about a true parameter vector, of these estimators up to the fifth-order. In particular, (i) we show that third-order efficient estimators are always fourth-order efficient; (ii) a necessary and sufficient condition for fifth-order efficiency is provided; and finally (iii) the MLE is shown to be fifth-order efficient.

Suggested Citation

  • Kano, Yutaka, 1998. "More Higher-Order Efficiency: Concentration Probability," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 349-366, November.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:349-366

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Magnus, J.R. & Neudecker, H., 1985. "Matrix differential calculus with applications to simple, Hadamard, and Kronecker products," Other publications TiSEM 1b2f1740-bfd1-4ea5-986c-9, Tilburg University, School of Economics and Management.
    2. Taniguchi, Masanobu, 1986. "Third order asymptotic properties of maximum likelihood estimators for Gaussian ARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 1-31, February.
    3. Pfanzagl, J. & Wefelmeyer, W., 1978. "A third-order optimum property of the maximum likelihood estimator," Journal of Multivariate Analysis, Elsevier, vol. 8(1), pages 1-29, March.
    4. Takeuchi, Kei & Morimune, Kimio, 1985. "Third-Order Efficiency of the Extended Maximum Likelihood Estimators in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 53(1), pages 177-200, January.
    5. Rao C. R. & Sinha Β. K. & Subramanyam K., 1982. "Third Order Efficiency Of The Maximum Likelihood Estimator In The Multinomial Distribution," Statistics & Risk Modeling, De Gruyter, vol. 1(1), pages 1-16, January.
    6. Yuzo Hosoya, 1990. "Information amount and higher-order efficiency in estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(1), pages 37-49, March.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:349-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.