IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v204y2024ics0047259x24000666.html
   My bibliography  Save this article

Bayesian covariance structure modeling of interval-censored multi-way nested survival data

Author

Listed:
  • Baas, Stef
  • Fox, Jean-Paul
  • Boucherie, Richard J.

Abstract

A Bayesian covariance structure model (BCSM) is proposed for interval-censored multi-way nested survival data. This flexible modeling framework generalizes mixed effects survival models by allowing positive and negative associations among clustered observations. Conjugate shifted-inverse gamma priors are proposed for the covariance parameters, implying inverse gamma priors for the eigenvalues of the covariance matrix, which ensures a positive definite covariance matrix under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs. This requires sampling latent variables from their marginal full conditional distributions, which are derived through a recursive formula. This makes the estimation procedure suitable for interval-censored data with large cluster sizes. For unbalanced nested designs, a novel (balancing) data augmentation procedure is introduced to improve the efficiency of the Gibbs sampler. The Gibbs sampling procedure is validated in two simulation studies. The linear transformation BCSM (LT-BCSM) was applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represented unobserved heterogeneity in treatment effects and were examined to detect differential treatment effects. A comparison was made with inference results under a random effects linear transformation model. It was concluded that the LT-BCSM led to inferences with higher posterior credibility, a more profound way of quantifying evidence for risk equivalence of the three treatments, and it was more robust to prior specifications.

Suggested Citation

  • Baas, Stef & Fox, Jean-Paul & Boucherie, Richard J., 2024. "Bayesian covariance structure modeling of interval-censored multi-way nested survival data," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000666
    DOI: 10.1016/j.jmva.2024.105359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kyu Ha Lee & Francesca Dominici & Deborah Schrag & Sebastien Haneuse, 2016. "Hierarchical Models for Semicompeting Risks Data With Application to Quality of End-of-Life Care for Pancreatic Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1075-1095, July.
    2. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    3. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    4. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    5. Schmidt, Klaus D., 2014. "On inequalities for moments and the covariance of monotone functions," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 91-95.
    6. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    3. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    4. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    5. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    6. Stephan Wachtel & Thomas Otter, 2013. "Successive Sample Selection and Its Relevance for Management Decisions," Marketing Science, INFORMS, vol. 32(1), pages 170-185, September.
    7. Min, Chung-ki, 1998. "A Gibbs sampling approach to estimation and prediction of time-varying-parameter models," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 171-194, April.
    8. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    9. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    10. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    11. Adam Kapor & Mohit Karnani & Christopher Neilson, 2024. "Aftermarket Frictions and the Cost of Off-Platform Options in Centralized Assignment Mechanisms," Journal of Political Economy, University of Chicago Press, vol. 132(7), pages 2346-2395.
    12. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    13. Ge, Houtian & Gomez, Miguel I. & Richards, Timothy J., 2018. "Retailer Marketing Strategy and Consumer Purchase Decision for Local Food – An Agent-Based Model," 2018 Annual Meeting, August 5-7, Washington, D.C. 273819, Agricultural and Applied Economics Association.
    14. Siddhartha Chib & Edward Greenberg & Yuxin Chen, 1998. "MCMC Methods for Fitting and Comparing Multinomial Response Models," Econometrics 9802001, University Library of Munich, Germany, revised 06 May 1998.
    15. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    16. Patrick Bajari, 2003. "Comment," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 277-283, September.
    17. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    18. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    19. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    20. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:204:y:2024:i:c:s0047259x24000666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.