Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2016.04.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
- Gordana Derado & F. DuBois Bowman & Clinton D. Kilts, 2010. "Modeling the Spatial and Temporal Dependence in fMRI Data," Biometrics, The International Biometric Society, vol. 66(3), pages 949-957, September.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
- Frahm, Gabriel & Jaekel, Uwe, 2007. "Tyler's M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance," Discussion Papers in Econometrics and Statistics 2/07, University of Cologne, Institute of Econometrics and Statistics.
- Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
- Lu, Nelson & Zimmerman, Dale L., 2005. "The likelihood ratio test for a separable covariance matrix," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 449-457, July.
- Roś, Beata & Bijma, Fetsje & de Munck, Jan C. & de Gunst, Mathisca C.M., 2016. "Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 345-361.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
- Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Gregory Cox, 2018. "Almost Sure Uniqueness of a Global Minimum Without Convexity," Papers 1803.02415, arXiv.org, revised Feb 2019.
- Kim, Seungkyu & Park, Seongoh & Lim, Johan & Lee, Sang Han, 2023. "Robust tests for scatter separability beyond Gaussianity," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
- HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016.
"Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case,"
LIDAM Discussion Papers CORE
2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
- Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers CWP52/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hafner, C. M. & Linton, O., 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1664, Faculty of Economics, University of Cambridge.
- Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020.
"Estimation of a multiplicative correlation structure in the large dimensional case,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
- Hafner, C. & Linton, O. & Tang, H., 2018. "Estimation of a Multiplicative Correlation Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1878, Faculty of Economics, University of Cambridge.
- Hafner, Christian & Linton, Oliver & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," LIDAM Reprints ISBA 2020028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
- Tatsuya Kubokawa & Muni S. Srivastava, 2013. "Optimal Ridge-type Estimators of Covariance Matrix in High Dimension," CIRJE F-Series CIRJE-F-906, CIRJE, Faculty of Economics, University of Tokyo.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
- Huang, Na & Fryzlewicz, Piotr, 2018. "NOVELIST estimator of large correlation and covariance matrices and their inverses," LSE Research Online Documents on Economics 89055, London School of Economics and Political Science, LSE Library.
- Monika Bours & Ansgar Steland, 2021. "Large‐sample approximations and change testing for high‐dimensional covariance matrices of multivariate linear time series and factor models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 610-654, June.
- Fisher, Thomas J. & Sun, Xiaoqian, 2011. "Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1909-1918, May.
- De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
- Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
- Ikeda, Yuki & Kubokawa, Tatsuya & Srivastava, Muni S., 2016. "Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 95-108.
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
More about this item
Keywords
Constrained covariance estimation; Robust estimation; High-dimensional estimation; Kronecker product structure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:149:y:2016:i:c:p:92-113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.