IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.07194.html
   My bibliography  Save this paper

Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

Author

Listed:
  • Viet Anh Nguyen
  • Daniel Kuhn
  • Peyman Mohajerin Esfahani

Abstract

We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein ambiguity set to infer the inverse covariance matrix of a $p$-dimensional Gaussian random vector from $n$ independent samples. The proposed model minimizes the worst case (maximum) of Stein's loss across all normal reference distributions within a prescribed Wasserstein distance from the normal distribution characterized by the sample mean and the sample covariance matrix. We prove that this estimation problem is equivalent to a semidefinite program that is tractable in theory but beyond the reach of general purpose solvers for practically relevant problem dimensions $p$. In the absence of any prior structural information, the estimation problem has an analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Besides being invertible and well-conditioned even for $p>n$, the new shrinkage estimator is rotation-equivariant and preserves the order of the eigenvalues of the sample covariance matrix. These desirable properties are not imposed ad hoc but emerge naturally from the underlying distributionally robust optimization model. Finally, we develop a sequential quadratic approximation algorithm for efficiently solving the general estimation problem subject to conditional independence constraints typically encountered in Gaussian graphical models.

Suggested Citation

  • Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
  • Handle: RePEc:arx:papers:1805.07194
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.07194
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    2. So Yeon Chun & Michael W. Browne & Alexander Shapiro, 2018. "Modified Distribution-Free Goodness-of-Fit Test Statistic," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 48-66, March.
    3. Touloumis, Anestis, 2015. "Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 251-261.
    4. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    5. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    6. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    7. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    8. Joong-Ho Won & Johan Lim & Seung-Jean Kim & Bala Rajaratnam, 2013. "Condition-number-regularized covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 427-450, June.
    9. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    10. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    11. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    12. Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
    13. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.07194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.