IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i2d10.1007_s13253-023-00575-w.html
   My bibliography  Save this article

Testing Correlation in a Three-Level Model

Author

Listed:
  • Anna Szczepańska-Álvarez

    (Poznań University of Life Sciences)

  • Adolfo Álvarez

    (O-I Business Service Center)

  • Artur Szwengiel

    (Poznań University of Life Sciences)

  • Dietrich Rosen

    (Linköping University)

Abstract

In this paper, we present a statistical approach to evaluate the relationship between variables observed in a two-factors experiment. We consider a three-level model with covariance structure $${\varvec{\Sigma }} \otimes {\varvec{\Psi }}_1 \otimes {\varvec{\Psi }}_2$$ Σ ⊗ Ψ 1 ⊗ Ψ 2 , where $${\varvec{\Sigma }}$$ Σ is an arbitrary positive definite covariance matrix, and $${\varvec{\Psi }}_1$$ Ψ 1 and $${\varvec{\Psi }}_2$$ Ψ 2 are both correlation matrices with a compound symmetric structure corresponding to two different factors. The Rao’s score test is used to test the hypotheses that observations grouped by one or two factors are uncorrelated. We analyze a fermentation process to illustrate the results. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Anna Szczepańska-Álvarez & Adolfo Álvarez & Artur Szwengiel & Dietrich Rosen, 2024. "Testing Correlation in a Three-Level Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 257-276, June.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:2:d:10.1007_s13253-023-00575-w
    DOI: 10.1007/s13253-023-00575-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00575-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00575-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soloveychik, I. & Trushin, D., 2016. "Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 92-113.
    2. Filipiak, Katarzyna & Klein, Daniel, 2017. "Estimation of parameters under a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 73-86.
    3. L. Rob Verdooren, 2020. "History of the Statistical Design of Agricultural Experiments," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 457-486, December.
    4. Roy, Anuradha & Leiva, Ricardo, 2008. "Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1971-1980, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Leiva & Anuradha Roy, 2016. "Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix," Working Papers 0146mss, College of Business, University of Texas at San Antonio.
    2. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.
    3. Gerhard Moitzi & Reinhard W. Neugschwandtner & Hans-Peter Kaul & Helmut Wagentristl, 2021. "Crop sequence effects on energy efficiency and land demand in a long-term fertilisation trial," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(12), pages 739-746.
    4. Pan, Yating & Fei, Yu & Ni, Mingming & Nummi, Tapio & Pan, Jianxin, 2022. "Growth curve mixture models with unknown covariance structures," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Hans-Peter Piepho & Robert J. Tempelman & Emlyn R. Williams, 2020. "Guest Editors’ Introduction to the Special Issue on “Recent Advances in Design and Analysis of Experiments and Observational Studies in Agriculture”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 453-456, December.
    6. Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    7. Kim, Seungkyu & Park, Seongoh & Lim, Johan & Lee, Sang Han, 2023. "Robust tests for scatter separability beyond Gaussianity," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    8. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    9. Hao, Chengcheng & Liang, Yuli & Mathew, Thomas, 2016. "Testing variance parameters in models with a Kronecker product covariance structure," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 182-189.
    10. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    11. Anuradha Roy & Ricardo Leiva, 2013. "Testing the Equality of Mean Vectors for Paired Doubly Multivariate Observations," Working Papers 0180mss, College of Business, University of Texas at San Antonio.
    12. Roy, Anuradha & Zmyślony, Roman & Fonseca, Miguel & Leiva, Ricardo, 2016. "Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 81-90.
    13. Carlos A. Coelho & Anuradha Roy, 2020. "Testing the hypothesis of a doubly exchangeable covariance matrix," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 45-68, January.
    14. Liang, Yuli & Hao, Chengcheng & Dai, Deliang, 2024. "Two-sample intraclass correlation coefficient tests for matrix-valued data," Working Papers in Economics and Statistics 6/2024, Linnaeus University, School of Business and Economics, Department of Economics and Statistics.
    15. Vasiliki Koutra & Steven G. Gilmour & Ben M. Parker & Andrew Mead, 2023. "Design of Agricultural Field Experiments Accounting for both Complex Blocking Structures and Network Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 526-548, September.
    16. Shinpei Imori & Dietrich Rosen & Ryoya Oda, 2022. "Growth Curve Model with Bilinear Random Coefficients," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 477-508, August.
    17. Gregory Cox, 2018. "Almost Sure Uniqueness of a Global Minimum Without Convexity," Papers 1803.02415, arXiv.org, revised Feb 2019.
    18. Seongoh Park & Johan Lim & Xinlei Wang & Sanghan Lee, 2019. "Permutation based testing on covariance separability," Computational Statistics, Springer, vol. 34(2), pages 865-883, June.
    19. Katarzyna Filipiak & Daniel Klein & Anuradha Roy, 2015. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Working Papers 0148mss, College of Business, University of Texas at San Antonio.
    20. Carlos A. Coelho & Anuradha Roy, 2014. "Testing the hypothesis of a doubly exchangeable covariance matrix for elliptically contoured distributions," Working Papers 0145mss, College of Business, University of Texas at San Antonio.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:2:d:10.1007_s13253-023-00575-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.