IDEAS home Printed from https://ideas.repec.org/p/tsa/wpaper/0146mss.html
   My bibliography  Save this paper

Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix

Author

Listed:
  • Ricardo Leiva
  • Anuradha Roy

    (UTSA)

Abstract

We study multi-level multivariate normal distribution with self similar compound symmetry co-variance structure for k di erent levels of the multivariate data. Both maximum likelihood and unbiased estimates of the matrix parameters are obtained. The spectral decomposition of the new covariance structure are discussed and are demonstrated with a real dataset from medical studies.

Suggested Citation

  • Ricardo Leiva & Anuradha Roy, 2016. "Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix," Working Papers 0146mss, College of Business, University of Texas at San Antonio.
  • Handle: RePEc:tsa:wpaper:0146mss
    as

    Download full text from publisher

    File URL: http://interim.business.utsa.edu/wps/mss/0002MSS-253-2016.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anuradha Roy, 2014. "A two-stage principal component analysis of symbolic data using equicorrelated and jointly equicorrelated covariance structures," Working Papers 0164mss, College of Business, University of Texas at San Antonio.
    2. Hao, Chengcheng & Liang, Yuli & Roy, Anuradha, 2015. "Equivalency between vertices and centers-coupled-with-radii principal component analyses for interval data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 113-120.
    3. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.
    4. Leiva, Ricardo & Roy, Anuradha, 2012. "Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1644-1661.
    5. Leiva, Ricardo, 2007. "Linear discrimination with equicorrelated training vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 384-409, February.
    6. Roy, Anuradha & Zmyślony, Roman & Fonseca, Miguel & Leiva, Ricardo, 2016. "Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 81-90.
    7. Roy, Anuradha & Leiva, Ricardo, 2008. "Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1971-1980, September.
    8. Ohlson, Martin & Rauf Ahmad, M. & von Rosen, Dietrich, 2013. "The multilinear normal distribution: Introduction and some basic properties," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Anuradha & Zmyślony, Roman & Fonseca, Miguel & Leiva, Ricardo, 2016. "Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 81-90.
    2. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.
    3. Arkadiusz Koziol & Anuradha Roy & Roman Zmyslony & Ricardo Leiva & Miguel Fonseca, 2016. "Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure," Working Papers 0149mss, College of Business, University of Texas at San Antonio.
    4. Katarzyna Filipiak & Mateusz John & Daniel Klein, 2023. "Testing independence under a block compound symmetry covariance structure," Statistical Papers, Springer, vol. 64(2), pages 677-704, April.
    5. Hao, Chengcheng & Liang, Yuli & Roy, Anuradha, 2015. "Equivalency between vertices and centers-coupled-with-radii principal component analyses for interval data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 113-120.
    6. Tatjana Pavlenko & Anuradha Roy, 2013. "Supervised classifiers of ultra high-dimensional higher-order data with locally doubly exchangeable covariance structure," Working Papers 0185mss, College of Business, University of Texas at San Antonio.
    7. Roman Zmyslony & Arkadiusz Kozioł, 2019. "Testing Hypotheses About Structure Of Parameters In Models With Block Compound Symmetric Covariance Structure," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 139-153, June.
    8. Zmyślony Roman & Kozioł Arkadiusz, 2019. "Testing Hypotheses About Structure Of Parameters In Models With Block Compound Symmetric Covariance Structure," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 139-153, June.
    9. Anuradha Roy & Ricardo Leiva, 2013. "Testing the Equality of Mean Vectors for Paired Doubly Multivariate Observations," Working Papers 0180mss, College of Business, University of Texas at San Antonio.
    10. Amitrajeet A. Batabyal & Hamid Beladi, 2015. "Optimal Transport Provision To A Tourist Destination: A Mechanism Design Approach," Working Papers 0141mss, College of Business, University of Texas at San Antonio.
    11. Carlos A. Coelho & Anuradha Roy, 2014. "Testing the hypothesis of a doubly exchangeable covariance matrix for elliptically contoured distributions," Working Papers 0145mss, College of Business, University of Texas at San Antonio.
    12. Pamela C. Smith & Dana A. Forgione, 2008. "Global Outsourcing of Healthcare: A Medical Tourism Decision Model," Working Papers 0033, College of Business, University of Texas at San Antonio.
    13. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    14. Kihoon Yoon & Daijin Ko & Carolina B. Livi & Nathan Trinklein & Mark Doderer & Stephen Kwek & Luiz O. F. Penalva, 2008. "Over-represented sequences located on UTRs are potentially involved in regulatory functions," Working Papers 0053, College of Business, University of Texas at San Antonio.
    15. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    16. Azaïs, Jean-Marc & Ribes, Aurélien, 2016. "Multivariate spline analysis for multiplicative models: Estimation, testing and application to climate change," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 38-53.
    17. Roy, Anuradha & Leiva, Ricardo, 2008. "Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1971-1980, September.
    18. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    19. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
    20. HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," LIDAM Discussion Papers CORE 2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    Eigenblock; eigenmatrix; k??level data; self-similar compound symmetry covariance structure;
    All these keywords.

    JEL classification:

    • H12 - Public Economics - - Structure and Scope of Government - - - Crisis Management
    • H25 - Public Economics - - Taxation, Subsidies, and Revenue - - - Business Taxes and Subsidies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsa:wpaper:0146mss. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wendy Frost (email available below). General contact details of provider: https://edirc.repec.org/data/cbutsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.