IDEAS home Printed from
   My bibliography  Save this article

Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure


  • Leiva, Ricardo
  • Roy, Anuradha


In this article, we study a new linear discriminant function for three-level m-variate observations under the assumption of multivariate normality. We assume that the m-variate observations have a doubly exchangeable covariance structure consisting of three unstructured covariance matrices for three multivariate levels and a separable additive structure on the mean vector. The new discriminant function is very efficient in discriminating individuals in a small sample scenario. An iterative algorithm is proposed to calculate the maximum likelihood estimates of the unknown population parameters as closed form solutions do not exist for these unknown parameters. The new discriminant function is applied to a real data set as well as to simulated data sets. We compare our findings with other linear discriminant functions for three-level multivariate data as well as with the traditional linear discriminant function.

Suggested Citation

  • Leiva, Ricardo & Roy, Anuradha, 2012. "Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1644-1661.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1644-1661
    DOI: 10.1016/j.csda.2011.10.007

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. J. K. Lindsey, 1999. "Multivariate Elliptically Contoured Distributions for Repeated Measurements," Biometrics, The International Biometric Society, vol. 55(4), pages 1277-1280, December.
    2. Leiva, Ricardo, 2007. "Linear discrimination with equicorrelated training vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 384-409, February.
    3. Paranjpe, S. A. & Gore, A. P., 1994. "Selecting variables for discrimination when covariance matrices are unequal," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 417-419, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1644-1661. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.