IDEAS home Printed from https://ideas.repec.org/p/tsa/wpaper/0185mss.html
   My bibliography  Save this paper

Supervised classifiers of ultra high-dimensional higher-order data with locally doubly exchangeable covariance structure

Author

Listed:
  • Tatjana Pavlenko
  • Anuradha Roy

    (UTSA)

Abstract

We explore the performance accuracy of the linear and quadratic classifiers for ultra highdimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance structure. We derive a two-stage procedure for estimating the covariance matrix: at the first stage, the Lasso-based structure learning is applied to sparsifying the block components within the covariance matrix. At the second stage, the maximum likelihood estimators of all block-wise parameters are derived given that the within block covariance structure is doubly exchangeable and the mean vector has a Kronecker product structure. We also study the effect of the block size on the classification performance in the ultra high-dimensional setting and derive a class of asymptotically equivalent block structure approximations, in a sense that the choice of the block size is asymptotically negligible. Using synthetic data, we have shown that our new supervised decision rules are very efficient in learning by very small sized training samples and then successfully classifying the test samples.

Suggested Citation

  • Tatjana Pavlenko & Anuradha Roy, 2013. "Supervised classifiers of ultra high-dimensional higher-order data with locally doubly exchangeable covariance structure," Working Papers 0185mss, College of Business, University of Texas at San Antonio.
  • Handle: RePEc:tsa:wpaper:0185mss
    as

    Download full text from publisher

    File URL: http://interim.business.utsa.edu/wps/mss/0048MSS-253-2013.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tatjana Pavlenko & Anders Björkström & Annika Tillander, 2012. "Covariance structure approximation via gLasso in high-dimensional supervised classification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1643-1666, January.
    2. Leiva, Ricardo & Roy, Anuradha, 2012. "Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1644-1661.
    3. Shutoh, Nobumichi & Hyodo, Masashi & Seo, Takashi, 2011. "An asymptotic approximation for EPMC in linear discriminant analysis based on two-step monotone missing samples," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 252-263, February.
    4. Leiva, Ricardo, 2007. "Linear discrimination with equicorrelated training vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 384-409, February.
    5. Paranjpe, S. A. & Gore, A. P., 1994. "Selecting variables for discrimination when covariance matrices are unequal," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 417-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Leiva & Anuradha Roy, 2016. "Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix," Working Papers 0146mss, College of Business, University of Texas at San Antonio.
    2. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.
    3. Amitrajeet A. Batabyal & Hamid Beladi, 2015. "Optimal Transport Provision To A Tourist Destination: A Mechanism Design Approach," Working Papers 0141mss, College of Business, University of Texas at San Antonio.
    4. Leiva, Ricardo & Roy, Anuradha, 2012. "Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1644-1661.
    5. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    6. Siyun Yang & Mirjam Moerbeek & Monica Taljaard & Fan Li, 2023. "Power analysis for cluster randomized trials with continuous coprimary endpoints," Biometrics, The International Biometric Society, vol. 79(2), pages 1293-1305, June.
    7. Anuradha Roy & Ricardo Leiva, 2013. "Testing the Equality of Mean Vectors for Paired Doubly Multivariate Observations," Working Papers 0180mss, College of Business, University of Texas at San Antonio.
    8. Kihoon Yoon & Daijin Ko & Carolina B. Livi & Nathan Trinklein & Mark Doderer & Stephen Kwek & Luiz O. F. Penalva, 2008. "Over-represented sequences located on UTRs are potentially involved in regulatory functions," Working Papers 0053, College of Business, University of Texas at San Antonio.
    9. Masashi Hyodo & Nobumichi Shutoh & Takahiro Nishiyama & Tatjana Pavlenko, 2015. "Testing block-diagonal covariance structure for high-dimensional data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 460-482, November.
    10. Roy, Anuradha & Zmyślony, Roman & Fonseca, Miguel & Leiva, Ricardo, 2016. "Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 81-90.
    11. Arkadiusz Koziol & Anuradha Roy & Roman Zmyslony & Ricardo Leiva & Miguel Fonseca, 2016. "Best unbiased estimates for parameters of three-level multivariate data with doubly exchangeable covariance structure," Working Papers 0149mss, College of Business, University of Texas at San Antonio.
    12. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    13. Katarzyna Filipiak & Mateusz John & Daniel Klein, 2023. "Testing independence under a block compound symmetry covariance structure," Statistical Papers, Springer, vol. 64(2), pages 677-704, April.
    14. Leiva, Ricardo, 2007. "Linear discrimination with equicorrelated training vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 384-409, February.
    15. Anuradha Roy, 2010. "Linear Models for Multivariate Repeated Measures Data," Working Papers 0017, College of Business, University of Texas at San Antonio.
    16. Hao, Chengcheng & Liang, Yuli & Roy, Anuradha, 2015. "Equivalency between vertices and centers-coupled-with-radii principal component analyses for interval data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 113-120.
    17. Roy, Anuradha & Leiva, Ricardo, 2008. "Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1971-1980, September.
    18. Carlos A. Coelho & Anuradha Roy, 2014. "Testing the hypothesis of a doubly exchangeable covariance matrix for elliptically contoured distributions," Working Papers 0145mss, College of Business, University of Texas at San Antonio.
    19. Jiayu Lai & Xiaoyi Wang & Kaige Zhao & Shurong Zheng, 2023. "Block-diagonal test for high-dimensional covariance matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 447-466, March.
    20. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.

    More about this item

    Keywords

    classification rule; class of asymptotically equivalent structure approximations; locally doubly exchangeable covariance structure; graphical Lasso; maximum likelihood estimates; ultra high-dimensional higher-order data;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsa:wpaper:0185mss. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wendy Frost (email available below). General contact details of provider: https://edirc.repec.org/data/cbutsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.