IDEAS home Printed from
   My bibliography  Save this article

Multivariate versions of Bartlett’s formula


  • Su, Nan
  • Lund, Robert


This paper quantifies the form of the asymptotic covariance matrix of the sample autocovariances in a multivariate stationary time series—the classic Bartlett formula. Such quantification is useful in many statistical inferences involving autocovariances. While joint asymptotic normality of the sample autocovariances is well-known in univariate settings, explicit forms of the asymptotic covariances have not been investigated in the general multivariate non-Gaussian case. We fill this gap by providing such an analysis, bookkeeping all skewness terms. Additionally, following a recent univariate paper by Francq and Zakoian, we consider linear processes driven by non-independent errors, a feature that permits consideration of multivariate GARCH processes.

Suggested Citation

  • Su, Nan & Lund, Robert, 2012. "Multivariate versions of Bartlett’s formula," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 18-31.
  • Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:18-31
    DOI: 10.1016/j.jmva.2011.08.008

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Christian Francq & Jean-Michel Zakoïan, 2009. "Bartlett's formula for a general class of nonlinear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 449-465, July.
    2. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(01), pages 3-22, February.
    3. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    4. Chanda, K. C., 1993. "Asymptotic Properties of Serial Covariances for Nonlinear Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 47(1), pages 163-171, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lei Jin & Suojin Wang, 2016. "A New Test for Checking the Equality of the Correlation Structures of two time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 355-368, May.
    2. Vicky Fasen, 2016. "Dependence Estimation for High-frequency Sampled Multivariate CARMA Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 292-320, March.
    3. Miettinen, Jari & Nordhausen, Klaus & Oja, Hannu & Taskinen, Sara, 2014. "Deflation-based separation of uncorrelated stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 214-227.
    4. Miettinen, Jari & Nordhausen, Klaus & Oja, Hannu & Taskinen, Sara, 2012. "Statistical properties of a blind source separation estimator for stationary time series," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1865-1873.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:18-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.