IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i9p2168-2183.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Robust estimation of periodic autoregressive processes in the presence of additive outliers

Author

Listed:
  • Sarnaglia, A.J.Q.
  • Reisen, V.A.
  • Lévy-Leduc, C.

Abstract

This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux (1993) [28], and Ma and Genton (2000) [23] to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.

Suggested Citation

  • Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2168-2183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00113-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry L. Hurd & Neil L. Gerr, 1991. "Graphical Methods For Determining The Presence Of Periodic Correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 337-350, July.
    2. Q. Shao, 2008. "Robust Estimation For Periodic Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 251-263, March.
    3. Shao, Q. & Ni, P.P., 2004. "Least-squares estimation and ANOVA for periodic autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 287-297, September.
    4. Eugen Ursu & Pierre Duchesne, 2009. "On modelling and diagnostic checking of vector periodic autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 70-96, January.
    5. Chan, Wai-sum, 1995. "Outliers and financial time series modelling: A cautionary note," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 425-430.
    6. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    7. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
    8. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    9. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    10. Franses, Philip Hans & Paap, Richard, 1994. "Model Selection in Periodic Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(4), pages 421-439, November.
    11. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, July.
    12. Yanyuan Ma & Marc G. Genton, 2000. "Highly Robust Estimation of the Autocovariance Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 663-684, November.
    13. Peter Bloomfield & Harry L. Hurd & Robert B. Lund, 1994. "Periodic Correlation In Stratospheric Ozone Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 127-150, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    2. Reisen, Valdério Anselmo & Monte, Edson Zambon & da Conceição Franco, Glaura & Sgrancio, Adriano Marcio & Molinares, Fábio Alexander Fajardo & Bondon, Pascal & Ziegelmann, Flávio Augusto & Abraham, Bo, 2018. "Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 27-43.
    3. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    2. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    3. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    4. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    5. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    6. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.
    7. Paul L. Anderson & Farzad Sabzikar & Mark M. Meerschaert, 2021. "Parsimonious time series modeling for high frequency climate data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 442-470, July.
    8. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    9. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.
    10. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    11. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    12. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    13. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    14. Soumya Das & Marc G. Genton & Yasser M. Alshehri & Georgiy L. Stenchikov, 2021. "A cyclostationary model for temporal forecasting and simulation of solar global horizontal irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    15. Mohammad Reza Mahmoudi & Mohsen Maleki, 2017. "A new method to detect periodically correlated structure," Computational Statistics, Springer, vol. 32(4), pages 1569-1581, December.
    16. Hurd, H. & Makagon, A. & Miamee, A. G., 0. "On AR(1) models with periodic and almost periodic coefficients," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 167-185, July.
    17. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    18. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
    19. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    20. Jiajie Kong & Robert Lund, 2023. "Seasonal count time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 93-124, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2168-2183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.