IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v32y2011i6p699-723.html

Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models

Author

Listed:
  • Christian Francq
  • Roch Roy
  • Abdessamad Saidi

Abstract

The aim of this work is to investigate the asymptotic properties of weighted least squares (WLS) estimation for causal and invertible periodic autoregressive moving average (PARMA) models with uncorrelated but dependent errors. Under mild assumptions, it is shown that the WLS estimators of PARMA models are strongly consistent and asymptotically normal. It extends Theorem 3.1 of Basawa and Lund (2001) on least squares estimation of PARMA models with independent errors. It is seen that the asymptotic covariance matrix of the WLS estimators obtained under dependent errors is generally different from that obtained with independent errors. The impact can be dramatic on the standard inference methods based on independent errors when the latter are dependent. Examples and simulation results illustrate the practical relevance of our findings. An application to financial data is also presented.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
  • Handle: RePEc:bla:jtsera:v:32:y:2011:i:6:p:699-723
    DOI: j.1467-9892.2011.00728.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9892.2011.00728.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9892.2011.00728.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.
    2. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    3. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org, revised Aug 2025.
    4. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    5. Abdelouahab Bibi & Ahmed Ghezal, 2016. "On periodic time-varying bilinear processes: structure and asymptotic inference," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 395-420, August.
    6. Boubacar Maïnassara, Yacouba & Ursu, Eugen, 2025. "Diagnostic checking of periodic vector autoregressive time series models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    7. Yacouba Boubacar Maïnassara & Eugen Ursu, 2023. "Estimating weak periodic vector autoregressive time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 958-997, September.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:32:y:2011:i:6:p:699-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.