IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i10p2255-2265.html
   My bibliography  Save this article

Subsampling tests for variance changes in the presence of autoregressive parameter shifts

Author

Listed:
  • Jin, Hao
  • Zhang, Jinsuo

Abstract

In this paper, we consider the problem of testing for variance changes in the linear autoregressive processes including AR(p) processes when there are autoregressive parameter shifts. In performing a test, we employ the conventional residual CUSUM of squares test (RCUSQ) statistic. The RCUSQ test is based on the subsampling method introduced by Jach and Kokoszka (2004) [16] to eliminate the influence caused by autoregressive parameter shifts. It is shown that under regularity conditions, the test statistic behaves asymptotically the function of a standard Brownian bridge. We establish the asymptotic validity of this method and assess its performance both theoretically and numerically.

Suggested Citation

  • Jin, Hao & Zhang, Jinsuo, 2010. "Subsampling tests for variance changes in the presence of autoregressive parameter shifts," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2255-2265, November.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2255-2265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00094-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    3. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    4. Gombay, Edit, 2008. "Change detection in autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 451-464, March.
    5. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    6. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    7. Jin, Hao & Tian, Zheng & Qin, Ruibing, 2009. "Bootstrap tests for structural change with infinite variance observations," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1985-1995, October.
    8. Perron, Pierre, 1990. "Testing for a Unit Root in a Time Series with a Changing Mean," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 153-162, April.
    9. Bhattacharya, P.K., 1987. "Maximum likelihood estimation of a change-point in the distribution of independent random variables: General multiparameter case," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 183-208, December.
    10. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    11. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Hao & Zhang, Jinsuo & Zhang, Si & Yu, Cong, 2013. "The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 25-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:10:p:2255-2265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.