IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v36y2011i3p450-451.html
   My bibliography  Save this article

Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture: Reply

Author

Listed:
  • Seo, S. Niggol

Abstract

No abstract is available for this item.

Suggested Citation

  • Seo, S. Niggol, 2011. "Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture: Reply," Food Policy, Elsevier, vol. 36(3), pages 450-451, June.
  • Handle: RePEc:eee:jfpoli:v:36:y:2011:i:3:p:450-451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-9192(11)00042-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Kerry Smith, 2010. "Reflections--Legacies, Incentives, and Advice," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 309-324, Summer.
    2. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    3. Seo, S. Niggol, 2010. "Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture," Food Policy, Elsevier, vol. 35(1), pages 32-40, February.
    4. S. Niggol Seo, 2010. "A Microeconometric Analysis of Adapting Portfolios to Climate Change: Adoption of Agricultural Systems in Latin America," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 32(3), pages 489-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maurice Cossi Ahozonlin & Luc Hippolyte Dossa, 2020. "Diversity and Resilience to Socio-Ecological Changes of Smallholder Lagune Cattle Farming Systems of Benin," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    2. Nicolli, F. & Acosta, A. & Karfakis, P., 2018. "Are Livestock s keepers more resilient to climate shocks: Fact or Artifact?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277482, International Association of Agricultural Economists.
    3. Houessou, Sandrine O. & Dossa, Luc Hippolyte & Diogo, Rodrigue V.C. & Houinato, Marcel & Buerkert, Andreas & Schlecht, Eva, 2019. "Change and continuity in traditional cattle farming systems of West African Coast countries: A case study from Benin," Agricultural Systems, Elsevier, vol. 168(C), pages 112-122.
    4. Sonja, Vermeulen & Meryl, Richards & Alessandro, De Pinto & Dino, Ferrarese & Peter, Läderach & Le, Lan & Marty, Luckert & Enrico, Mazzoli & Laura, Plant & Roberto, Rinaldi & Jim, Stephenson & Paul, W, 2016. "The Economic Advantage: Assessing the value of climate-change actions in agriculture," IFAD Advantage Series 304740, International Fund for Agricultural Development (IFAD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, S. Niggol, 2011. "An analysis of public adaptation to climate change using agricultural water schemes in South America," Ecological Economics, Elsevier, vol. 70(4), pages 825-834, February.
    2. Seo, S. Niggol & McCarl, Bruce A. & Mendelsohn, Robert, 2010. "From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America," Ecological Economics, Elsevier, vol. 69(12), pages 2486-2494, October.
    3. Murray, Anthony G & Mills, Bradford F, 2014. "Estimating the Resiliency of Zambian Smallholder Farmers: Evidence from a Three-Wave Panel," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170234, Agricultural and Applied Economics Association.
    4. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    5. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    6. Bai, Junfei & Xu, Zhigang & Qiu, Huanguang & Liu, Haiyan, 2015. "Optimising seed portfolios to cope ex ante with risks from bad weather: evidence from a recent maize farmer survey in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    7. Kim, Chung-Sil & Jung, Hye-Kyung & Lee, Sang-Ho & Park, Soo-Young & Takei, Atsuo, 2012. "An Analysis on Determinants of Farmers´ Adaptation to Climate Change in Korea," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 35(2), pages 1-20, July.
    8. Thomas Slijper & Yann de Mey & P Marijn Poortvliet & Miranda P M Meuwissen, 2022. "Quantifying the resilience of European farms using FADN," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 121-150.
    9. Chishimba, Elizabeth Mubanga & Wilson, Paul N., 2021. "Resilience to shocks in Malawian households," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(2), June.
    10. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    11. Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2008. "Climate change, irrigation, and Israeli agriculture: Will warming be harmful?," Ecological Economics, Elsevier, vol. 65(3), pages 508-515, April.
    12. John M. Antle & Susan M. Capalbo, 2001. "Econometric-Process Models for Integrated Assessment of Agricultural Production Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 389-401.
    13. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    14. McFadden, Jonathan R., 2015. "Essays on climate change adaptation and biotechnologies in U.S. agriculture," ISU General Staff Papers 201501010800005635, Iowa State University, Department of Economics.
    15. Dixon, Bruce L. & Segerson, Kathleen, 1999. "Impacts Of Increased Climate Variability On The Profitability Of Midwest Agriculture," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 31(3), pages 1-13, December.
    16. Elena Paglialunga & Andrea Coveri & Antonello Zanfei, 2020. "Climate change and inequality in a global context. Exploring climate induced disparities and the reaction of economic systems," Working Papers 2003, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2020.
    17. Josué Medellín-Azuara & Richard Howitt & Duncan MacEwan & Jay Lund, 2011. "Economic impacts of climate-related changes to California agriculture," Climatic Change, Springer, vol. 109(1), pages 387-405, December.
    18. Francesco Bosello & Jian Zhang, 2006. "The Effects of Climate Change on Agriculture," QA - Rivista dell'Associazione Rossi-Doria, Associazione Rossi Doria, issue 1, March.
    19. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    20. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:36:y:2011:i:3:p:450-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.