IDEAS home Printed from https://ideas.repec.org/a/eee/jebusi/v63y2011i3p217-236.html
   My bibliography  Save this article

A symmetric LPM model for heuristic mean-semivariance analysis

Author

Listed:
  • Cumova, Denisa
  • Nawrocki, David

Abstract

While the semivariance (lower partial moment degree 2) has been variously described as being more in line with investors' attitude towards risk, implementation in a forecasting portfolio management role has been hampered by computational problems. The original formulation by Markowitz (1959) requires a laborious iterative process because the cosemivariance matrix is endogenous and a closed form solution does not exist. There have been attempts at optimizing an exogenous asymmetric cosemivariance matrix. However, this approach does not always provide a positive semi-definite matrix for which a closed form solution exists. We provide a proof that converts the exogenous asymmetric matrix to a symmetric matrix for which a closed form solution does exist. This approach allows the mean-semivariance formulation to be solved using Markowitz's critical line algorithm. Empirical results compare the cosemivariance algorithm to the covariance algorithm which is currently the best optimization proxy for the cosemivariance. We also compare our formulation to Estrada's (2008) cosemivariance formulation. The results demonstrate that the cosemivariance algorithm is robust to a 45 security universe and is still effective at increasing portfolio skewness at a 150 security universe. There are four major benefits to a usable mean-semivariance formulation: (1) managers may engineer skewness into the portfolio without resorting to option strategies, (2) managers will be able to evaluate the skewness effect of option strategies within their portfolio, (3) a workable mean-semivariance algorithm leads to a workable n-degree lower partial moment (LPM) algorithms which provides managers access to a wider variety of investor utility functions including risk averse, risk neutral, and risk seeking utility functions, and (4) a workable LPM algorithm leads to a workable UPM/LPM (upper partial moment/lower partial moment) algorithm.

Suggested Citation

  • Cumova, Denisa & Nawrocki, David, 2011. "A symmetric LPM model for heuristic mean-semivariance analysis," Journal of Economics and Business, Elsevier, vol. 63(3), pages 217-236, May.
  • Handle: RePEc:eee:jebusi:v:63:y:2011:i:3:p:217-236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148-6195(11)00013-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    2. Elton, Edwin J & Gruber, Martin J & Padberg, Manfred W, 1976. "Simple Criteria for Optimal Portfolio Selection," Journal of Finance, American Finance Association, vol. 31(5), pages 1341-1357, December.
    3. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    4. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Abstract: Capital Market Equilibrium in a Mean-Lower Partial Moment Framework," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 635-635, November.
    5. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
      • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    6. Harlow, W. V. & Rao, Ramesh K. S., 1989. "Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(03), pages 285-311, September.
    7. Hanqing Jin & Harry Markowitz & Xun Yu Zhou, 2006. "A Note On Semivariance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 53-61.
    8. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    9. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    10. Ang, James S. & Chua, Jess H., 1979. "Composite Measures for the Evaluation of Investment Performance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 14(02), pages 361-384, June.
    11. Hogan, William W. & Warren, James M., 1974. "Toward the Development of an Equilibrium Capital-Market Model Based on Semivariance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 9(01), pages 1-11, January.
    12. Simkowitz, Michael A. & Beedles, William L., 1978. "Diversification in a Three-Moment World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(05), pages 927-941, December.
    13. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. " Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    14. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    15. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    16. Ang, James S., 1975. "A Note on the E, SL Portfolio Selection Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(05), pages 849-857, December.
    17. Post, G.T. & van Vliet, P. & Lansdorp, S.D., 2009. "Sorting out Downside Beta," ERIM Report Series Research in Management ERS-2009-006-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    2. León, Ángel & Moreno, Manuel, 2015. "Lower Partial Moments under Gram Charlier Distribution: Performance Measures and Efficient Frontiers," QM&ET Working Papers 15-3, University of Alicante, D. Quantitative Methods and Economic Theory.
    3. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    4. Cumova, Denisa & Nawrocki, David, 2014. "Portfolio optimization in an upside potential and downside risk framework," Journal of Economics and Business, Elsevier, vol. 71(C), pages 68-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jebusi:v:63:y:2011:i:3:p:217-236. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconbus .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.