IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v67y2008i2p394-417.html
   My bibliography  Save this article

Internet auctions with artificial adaptive agents: A study on market design

Author

Listed:
  • Duffy, John
  • Ünver, M.Utku

Abstract

We develop a model of internet auctions with the aim of understanding how rules for ending such auctions (a "hard"- or "soft"-close) affect bidding behavior. We model bidding strategies using finite automata and report results from simulations involving populations of artificial bidders who update their strategies using a genetic algorithm. Our model is shown to deliver late or early bidding behavior, depending on whether the auction has a hard- or soft-close rule in accordance with the empirical evidence. We report on other interesting properties of our model and offer some conclusions from a market design point of view.

Suggested Citation

  • Duffy, John & Ünver, M.Utku, 2008. "Internet auctions with artificial adaptive agents: A study on market design," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 394-417, August.
  • Handle: RePEc:eee:jeborg:v:67:y:2008:i:2:p:394-417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-2681(08)00090-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jim Engle-Warnick & Robert Slonim, 2006. "Inferring repeated-game strategies from actions: evidence from trust game experiments," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 603-632, August.
    2. Patrick Bajari & Ali Hortaçsu, 2004. "Economic Insights from Internet Auctions," Journal of Economic Literature, American Economic Association, vol. 42(2), pages 457-486, June.
    3. Milgrom, Paul R & Weber, Robert J, 1982. "A Theory of Auctions and Competitive Bidding," Econometrica, Econometric Society, vol. 50(5), pages 1089-1122, September.
    4. Andreoni James & Miller John H., 1995. "Auctions with Artificial Adaptive Agents," Games and Economic Behavior, Elsevier, vol. 10(1), pages 39-64, July.
    5. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    6. Alvin E. Roth & Axel Ockenfels, 2002. "Last-Minute Bidding and the Rules for Ending Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet," American Economic Review, American Economic Association, vol. 92(4), pages 1093-1103, September.
    7. Arifovic, Jasmina, 2000. "Evolutionary Algorithms In Macroeconomic Models," Macroeconomic Dynamics, Cambridge University Press, vol. 4(03), pages 373-414, September.
    8. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    9. Ockenfels, Axel & Roth, Alvin E., 2006. "Late and multiple bidding in second price Internet auctions: Theory and evidence concerning different rules for ending an auction," Games and Economic Behavior, Elsevier, vol. 55(2), pages 297-320, May.
    10. Miller, John H., 1996. "The coevolution of automata in the repeated Prisoner's Dilemma," Journal of Economic Behavior & Organization, Elsevier, vol. 29(1), pages 87-112, January.
    11. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    12. McAfee, R Preston & McMillan, John, 1987. "Auctions and Bidding," Journal of Economic Literature, American Economic Association, vol. 25(2), pages 699-738, June.
    13. Christopher Avery, 1998. "Strategic Jump Bidding in English Auctions," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 185-210.
    14. David Lucking-Reiley, 1999. "Using Field Experiments to Test Equivalence between Auction Formats: Magic on the Internet," American Economic Review, American Economic Association, vol. 89(5), pages 1063-1080, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Boyer & B. Brorsen & Tong Zhang, 2014. "Common-value auction versus posted-price selling: an agent-based model approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 9(1), pages 129-149, April.
    2. G. Fagiolo & A. Roventini., 2009. "On the Scientific Status of Economic Policy: A Tale of Alternative Paradigms," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
    3. Moulet, Sonia & Rouchier, Juliette, 2008. "The influence of seller learning and time constraints on sequential bargaining in an artificial perishable goods market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2322-2348, July.
    4. Axel Ockenfels & David Reiley & Abdolkarim Sadrieh, 2006. "Online Auctions," NBER Working Papers 12785, National Bureau of Economic Research, Inc.
    5. Carpenter, Jeffrey & Holmes, Jessica & Matthews, Peter Hans, 2011. "Jumping and sniping at the silents: Does it matter for charities?," Journal of Public Economics, Elsevier, vol. 95(5), pages 395-402.
    6. Sylvie Geisendorf, 2011. "Internal selection and market selection in economic Genetic Algorithms," Journal of Evolutionary Economics, Springer, vol. 21(5), pages 817-841, December.

    More about this item

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:67:y:2008:i:2:p:394-417. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jebo .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.