IDEAS home Printed from
   My bibliography  Save this article

Forecasting customer behaviour in a multi-service financial organisation: A profitability perspective


  • Audzeyeva, Alena
  • Summers, Barbara
  • Schenk-Hoppé, Klaus Reiner


This paper proposes a novel approach to the estimation of Customer Lifetime Value (CLV). CLV measures give an indication of the profit-generating potential of customers, and provide a key business tool for the customer management process. The performances of existing approaches are unsatisfactory in multi-service financial environments because of the high degree of heterogeneity in customer behaviour. We propose an adaptive segmentation approach which involves the identification of “neighbourhoods” using a similarity measure defined over a predictive variable space. The set of predictive variables is determined during a cross-validation procedure through the optimisation of rank correlations between the observed and predicted revenues. The future revenue is forecast for each customer using a predictive probability distribution based on customers exhibiting behavioural characteristics similar to previous periods. The model is developed and implemented for a UK retail bank, and is shown to perform well in comparison to other benchmark models.

Suggested Citation

  • Audzeyeva, Alena & Summers, Barbara & Schenk-Hoppé, Klaus Reiner, 2012. "Forecasting customer behaviour in a multi-service financial organisation: A profitability perspective," International Journal of Forecasting, Elsevier, vol. 28(2), pages 507-518.
  • Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:507-518
    DOI: 10.1016/j.ijforecast.2011.05.005

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Donald G. Morrison & Richard D. H. Chen & Sandra L. Karpis & Kathryn E. A. Britney, 1982. "Modelling Retail Customer Behavior at Merrill Lynch," Marketing Science, INFORMS, vol. 1(2), pages 123-141.
    3. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    4. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    5. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    6. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    7. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    8. Michael Greenacre, 1988. "Clustering the rows and columns of a contingency table," Journal of Classification, Springer;The Classification Society, vol. 5(1), pages 39-51, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sanchez-Barrios, Luis Javier & Andreeva, Galina & Ansell, Jake, 2016. "“Time-to-profit scorecards for revolving credit”," European Journal of Operational Research, Elsevier, vol. 249(2), pages 397-406.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:507-518. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.