IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v17y2023i1s1751157722001286.html
   My bibliography  Save this article

Research complexity increases with scientists’ academic age: Evidence from library and information science

Author

Listed:
  • Liang, Zhentao
  • Ba, Zhichao
  • Mao, Jin
  • Li, Gang

Abstract

With the continued aging of the scientific workforce, the impact of this trend on scientists’ research performance has attracted increasing attention. The literature has predominantly focused on the productivity, impact, and collaboration pattern of scientists of different ages. A research gap is found in investigating the differences in the research topics studied by junior and senior scientists. This study focuses on the complexity of a scientist's research portfolio (RPC). Based on the concept of economic complexity, RPC was measured to characterize the capability of scientists to study complex research topics. An economic algorithm was adopted to estimate RPC on heterogeneous author-topic bipartite networks using bibliographic data from the field of Library and Information Science between 1971 and 2020. Through comparisons among scientist groups, RPC shows promise in distinguishing outstanding scientists from peers who have similar values of other indicators (e.g., citations and H-index). The change in RPC was further probed across scientists’ careers and an increasing trend with academic age was found, even after removing the accumulated advantages of senior scientists. Moreover, top-ranked scientists distinguish themselves from their peers by a higher RPC in the first year and a greater growth rate during their careers. While many researchers have their highest RPC in the first year, most top-ranked scientists reach their peak RPC later in their careers. The results provide helpful references for studies on the aging effect in academia.

Suggested Citation

  • Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
  • Handle: RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001286
    DOI: 10.1016/j.joi.2022.101375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722001286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    2. Wei Wang & Shuo Yu & Teshome Megersa Bekele & Xiangjie Kong & Feng Xia, 2017. "Scientific collaboration patterns vary with scholars’ academic ages," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 329-343, July.
    3. David Bawden & Lyn Robinson, 2015. "“Waiting for Carnot”: Information and complexity," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2177-2186, November.
    4. Christina Viola Srivastava & Nathaniel Deshmukh Towery & Brian Zuckerman, 2007. "Challenges and opportunities for research portfolio analysis, management, and evaluation," Research Evaluation, Oxford University Press, vol. 16(3), pages 152-156, September.
    5. Hirotaka Kawashima & Hiroyuki Tomizawa, 2015. "Accuracy evaluation of Scopus Author ID based on the largest funding database in Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 1061-1071, June.
    6. Hartmann, Dominik & Guevara, Miguel R. & Jara-Figueroa, Cristian & Aristarán, Manuel & Hidalgo, César A., 2017. "Linking Economic Complexity, Institutions, and Income Inequality," World Development, Elsevier, vol. 93(C), pages 75-93.
    7. Valeria Aman, 2018. "Does the Scopus author ID suffice to track scientific international mobility? A case study based on Leibniz laureates," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 705-720, November.
    8. Benjamin F. Jones, 2011. "As Science Evolves, How Can Science Policy?," NBER Chapters, in: Innovation Policy and the Economy, Volume 11, pages 103-131, National Bureau of Economic Research, Inc.
    9. Balázs Győrffy & Gyöngyi Csuka & Péter Herman & Ádám Török, 2020. "Is there a golden age in publication activity?—an analysis of age-related scholarly performance across all scientific disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1081-1097, August.
    10. Giovanni Abramo & Ciriaco Andrea D’Angelo & Gianluca Murgia, 2016. "The combined effects of age and seniority on research performance of full professors," Science and Public Policy, Oxford University Press, vol. 43(3), pages 301-319.
    11. Hausmann, Ricardo & Hidalgo, Cesar, 2014. "The Atlas of Economic Complexity: Mapping Paths to Prosperity," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525429, December.
    12. Pierre-Alexandre Balland & David Rigby, 2017. "The Geography of Complex Knowledge," Economic Geography, Taylor & Francis Journals, vol. 93(1), pages 1-23, January.
    13. Elmira Janavi & Mohammad Javad Mansourzadeh & Mojgan Samandar Ali Eshtehardi, 2020. "A methodology for developing scientific diversification strategy of countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2229-2264, December.
    14. Peter Klimek & Aleksandar Jovanovic & Rainer Egloff & Reto Schneider, 2016. "Successful fish go with the flow: citation impact prediction based on centrality measures for term–document networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1265-1282, June.
    15. Mitcham, Carl & Emeritus,, 2021. "Science policy and democracy," Technology in Society, Elsevier, vol. 67(C).
    16. Shouhuai Xu & Moti Yung & Jingguo Wang, 2021. "Seeking Foundations for the Science of Cyber Security," Information Systems Frontiers, Springer, vol. 23(2), pages 263-267, April.
    17. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    18. Pierre Azoulay & Christian Fons-Rosen & Joshua S. Graff Zivin, 2019. "Does Science Advance One Funeral at a Time?," American Economic Review, American Economic Association, vol. 109(8), pages 2889-2920, August.
    19. Ivanova, Inga & Strand, Øivind & Kushnir, Duncan & Leydesdorff, Loet, 2017. "Economic and technological complexity: A model study of indicators of knowledge-based innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 77-89.
    20. Jean F. Liénard & Titipat Achakulvisut & Daniel E. Acuna & Stephen V. David, 2018. "Intellectual synthesis in mentorship determines success in academic careers," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    21. Lu, Wei & Ren, Yan & Huang, Yong & Bu, Yi & Zhang, Yuehan, 2021. "Scientific collaboration and career stages: An ego-centric perspective," Journal of Informetrics, Elsevier, vol. 15(4).
    22. Mikko Packalen & Jay Bhattacharya, 2019. "Age and the Trying Out of New Ideas," Journal of Human Capital, University of Chicago Press, vol. 13(2), pages 341-373.
    23. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    24. An Zeng & Zhesi Shen & Jianlin Zhou & Ying Fan & Zengru Di & Yougui Wang & H. Eugene Stanley & Shlomo Havlin, 2019. "Increasing trend of scientists to switch between topics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    25. Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
    26. Rousseau, Ronald & Yang, Liying, 2012. "Reflections on the activity index and related indicators," Journal of Informetrics, Elsevier, vol. 6(3), pages 413-421.
    27. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    28. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    29. Frans Sluis & Egon L. Broek & Richard J. Glassey & Elisabeth M. A. G. Dijk & Franciska M. G. Jong, 2014. "When complexity becomes interesting," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(7), pages 1478-1500, July.
    30. Ashkan Ebadi & Andrea Schiffauerova, 2016. "How to boost scientific production? A statistical analysis of research funding and other influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1093-1116, March.
    31. Rosiello, Alessandro & Maleki, Ali, 2021. "A dynamic multi-sector analysis of technological catch-up: The impact of technology cycle times, knowledge base complexity and variety," Research Policy, Elsevier, vol. 50(3).
    32. Abdullah Gök & John Rigby & Philip Shapira, 2016. "The impact of research funding on scientific outputs: Evidence from six smaller European countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 715-730, March.
    33. Zhiya Zuo & Kang Zhao, 2021. "Understanding and predicting future research impact at different career stages—A social network perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 454-472, April.
    34. Staša Milojević, 2012. "How Are Academic Age, Productivity and Collaboration Related to Citing Behavior of Researchers?," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    35. Cassidy R. Sugimoto & Thomas J. Sugimoto & Andrew Tsou & Staša Milojević & Vincent Larivière, 2016. "Age stratification and cohort effects in scholarly communication: a study of social sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 997-1016, November.
    36. Gao, Jian & Zhou, Tao, 2018. "Quantifying China’s regional economic complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1591-1603.
    37. Vincent Larivière & Yves Gingras & Cassidy R. Sugimoto & Andrew Tsou, 2015. "Team size matters: Collaboration and scientific impact since 1900," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1323-1332, July.
    38. John P A Ioannidis & Kevin W Boyack & Jeroen Baas, 2020. "Updated science-wide author databases of standardized citation indicators," PLOS Biology, Public Library of Science, vol. 18(10), pages 1-3, October.
    39. Weihua Li & Tomaso Aste & Fabio Caccioli & Giacomo Livan, 2019. "Early coauthorship with top scientists predicts success in academic careers," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    40. Tao Jia & Dashun Wang & Boleslaw K. Szymanski, 2017. "Quantifying patterns of research-interest evolution," Nature Human Behaviour, Nature, vol. 1(4), pages 1-7, April.
    41. Shalabh, 2021. "Statistical inference via data science," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1155-1155, July.
    42. Lu, Wei & Liu, Zhifeng & Huang, Yong & Bu, Yi & Li, Xin & Cheng, Qikai, 2020. "How do authors select keywords? A preliminary study of author keyword selection behavior," Journal of Informetrics, Elsevier, vol. 14(4).
    43. Abhay S. D. Rajput & Sangeeta Sharma, 2021. "India: draft science policy calls for public engagement," Nature, Nature, vol. 592(7852), pages 26-26, April.
    44. Vanderelst, Dieter & Speybroeck, Niko, 2013. "Scientometrics reveals funding priorities in medical research policy," Journal of Informetrics, Elsevier, vol. 7(1), pages 240-247.
    45. Lisa Mandle & Analisa Shields-Estrada & Rebecca Chaplin-Kramer & Matthew G. E. Mitchell & Leah L. Bremer & Jesse D. Gourevitch & Peter Hawthorne & Justin A. Johnson & Brian E. Robinson & Jeffrey R. Sm, 2021. "Increasing decision relevance of ecosystem service science," Nature Sustainability, Nature, vol. 4(2), pages 161-169, February.
    46. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    47. Angelica Sbardella & Emanuele Pugliese & Luciano Pietronero, 2017. "Economic development and wage inequality: A complex system analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.
    2. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    3. Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Weihua Li & Sam Zhang & Zhiming Zheng & Skyler J. Cranmer & Aaron Clauset, 2022. "Untangling the network effects of productivity and prominence among scientists," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "Reprint of The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(8).
    6. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Pierre Pelletier & Kevin Wirtz, 2023. "Sails and Anchors: The Complementarity of Exploratory and Exploitative Scientists in Knowledge Creation," Papers 2312.10476, arXiv.org.
    8. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2023. "A heuristic approach based on Leiden rankings to identify outliers: evidence from Italian universities in the European landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 483-510, January.
    9. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(3).
    10. Malte Hückstädt, 2023. "Ten reasons why research collaborations succeed—a random forest approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1923-1950, March.
    11. Zhang, Lin & Qi, Fan & Sivertsen, Gunnar & Liang, Liming & Campbell, David, 2023. "Gender differences in the patterns and consequences of changing specialization in scientific careers," SocArXiv ep5bx, Center for Open Science.
    12. Thomas, Duncan Andrew & Ramos-Vielba, Irene, 2022. "Reframing study of research(er) funding towards configurations and trails," SocArXiv uty2v, Center for Open Science.
    13. Cui, Haochuan & Zeng, An & Fan, Ying & Di, Zengru, 2021. "Quantifying the impact of a teamwork publication," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Michael Färber & Melissa Coutinho & Shuzhou Yuan, 2023. "Biases in scholarly recommender systems: impact, prevalence, and mitigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2703-2736, May.
    15. Hidalgo, César A., 2023. "The policy implications of economic complexity," Research Policy, Elsevier, vol. 52(9).
    16. Pierre-Alexandre Balland & Cristian Jara-Figueroa & Sergio G. Petralia & Mathieu P. A. Steijn & David L. Rigby & César A. Hidalgo, 2020. "Complex economic activities concentrate in large cities," Nature Human Behaviour, Nature, vol. 4(3), pages 248-254, March.
    17. Zhuanlan Sun & C. Clark Cao & Sheng Liu & Yiwei Li & Chao Ma, 2024. "Behavioral consequences of second-person pronouns in written communications between authors and reviewers of scientific papers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Nicola Cortinovis & Dongmiao Zhang & Ron Boschma, 2022. "Regional diversification and intra-regional wage inequality in the Netherlands," Papers in Evolutionary Economic Geography (PEEG) 2216, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2022.
    19. Parcu, Pier Luigi & Innocenti, Niccolò & Carrozza, Chiara, 2022. "Ubiquitous technologies and 5G development. Who is leading the race?," Telecommunications Policy, Elsevier, vol. 46(4).
    20. Travis J. Lybbert & Mingzhi Xu, 2022. "Innovation‐adjusted economic complexity and growth: Do patent flows reveal enhanced economic capabilities?," Review of Development Economics, Wiley Blackwell, vol. 26(1), pages 442-483, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:17:y:2023:i:1:s1751157722001286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.