IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i4s1751157724000737.html
   My bibliography  Save this article

The Prize Winner Index (PWI): A proposal for an indicator based on scientific prizes

Author

Listed:
  • Bornmann, Lutz
  • Haunschild, Robin

Abstract

In this study, we propose a new index for measuring performance in science which is based on collaborations (co-authorship distances) in science: the Prize Winner Index (PWI). The PWI is based on the Erdős number – a number that was introduced several years ago. We propose to focus with the new index on laureates of prestigious prizes in a certain field and to measure co-authorship distances between the laureates and other scientists. To exemplify and explain our proposal, we computed the proposed index in the field of quantitative science studies (PWIPM). The Derek de Solla Price Memorial Award (Price Medal, PM) is awarded to outstanding scientists in the field. We tested the convergent validity of the PWIPM. We were interested whether the indicator is related to two established bibliometric indicators: (1) citation impact (number of papers belonging to the 10 % most frequently cited), and (2) journal prestige (number of papers which have appeared in top quartile journals). The results show that the coefficients for the correlation between PWIPM and both indicators are high in cases when a sufficient number of papers have been considered for a reliable assessment of performance. Therefore, measured by established indicators for research performance, the new PWI indicator seems to be convergently valid and, therefore, might be a possible alternative for established (bibliometric) indicators – with a focus on prizes.

Suggested Citation

  • Bornmann, Lutz & Haunschild, Robin, 2024. "The Prize Winner Index (PWI): A proposal for an indicator based on scientific prizes," Journal of Informetrics, Elsevier, vol. 18(4).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000737
    DOI: 10.1016/j.joi.2024.101560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Wolfgang Glänzel & Henk F. Moed, 2013. "Opinion paper: thoughts and facts on bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 381-394, July.
    3. Joshua Ettinger & Friederike E. L. Otto & E. Lisa F. Schipper, 2021. "Storytelling can be a powerful tool for science," Nature, Nature, vol. 589(7842), pages 352-352, January.
    4. Ching Jin & Yifang Ma & Brian Uzzi, 2021. "Scientific prizes and the extraordinary growth of scientific topics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Jens Jirschitzka & Aileen Oeberst & Richard Göllner & Ulrike Cress, 2017. "Inter-rater reliability and validity of peer reviews in an interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1059-1092, November.
    6. Lutz Bornmann & Julian N. Marewski, 2019. "Heuristics as conceptual lens for understanding and studying the usage of bibliometrics in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 419-459, August.
    7. Johan S. G. Chu & James A. Evans, 2021. "Slowed canonical progress in large fields of science," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(41), pages 2021636118-, October.
    8. Lutz Bornmann & Werner Marx, 2014. "Distributions instead of single numbers: Percentiles and beam plots for the assessment of single researchers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(1), pages 206-208, January.
    9. Xiaojuan Liu & Mengxia Yu & Dar-Zen Chen & Mu-Hsuan Huang, 2018. "Tracking research performance before and after receiving the Cheung Kong Scholars award: A case study of recipients in 2005," Research Evaluation, Oxford University Press, vol. 27(4), pages 367-379.
    10. Mitcham, Carl & Emeritus,, 2021. "Science policy and democracy," Technology in Society, Elsevier, vol. 67(C).
    11. Shouhuai Xu & Moti Yung & Jingguo Wang, 2021. "Seeking Foundations for the Science of Cyber Security," Information Systems Frontiers, Springer, vol. 23(2), pages 263-267, April.
    12. Katz, J. Sylvan & Martin, Ben R., 1997. "What is research collaboration?," Research Policy, Elsevier, vol. 26(1), pages 1-18, March.
    13. Barry Bozeman & Daniel Fay & Catherine Slade, 2013. "Research collaboration in universities and academic entrepreneurship: the-state-of-the-art," The Journal of Technology Transfer, Springer, vol. 38(1), pages 1-67, February.
    14. repec:nas:journl:v:115:y:2018:p:12616-12623 is not listed on IDEAS
    15. Chen, Jiyao & Shao, Diana & Fan, Shaokun, 2021. "Destabilization and consolidation: Conceptualizing, measuring, and validating the dual characteristics of technology," Research Policy, Elsevier, vol. 50(1).
    16. Bornmann, Lutz & Mutz, Rüdiger & Hug, Sven E. & Daniel, Hans-Dieter, 2011. "A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants," Journal of Informetrics, Elsevier, vol. 5(3), pages 346-359.
    17. repec:nas:journl:v:115:y:2018:p:12608-12615 is not listed on IDEAS
    18. Henk F. Moed & Gali Halevi, 2015. "Multidimensional assessment of scholarly research impact," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(10), pages 1988-2002, October.
    19. Henk F. Moed, 2016. "Comprehensive indicator comparisons intelligible to non-experts: the case of two SNIP versions," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 51-65, January.
    20. Ho F. Chan & Franklin G. Mixon & Benno Torgler, 2018. "Relation of early career performance and recognition to the probability of winning the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1069-1086, March.
    21. An Zeng & Ying Fan & Zengru Di & Yougui Wang & Shlomo Havlin, 2021. "Fresh teams are associated with original and multidisciplinary research," Nature Human Behaviour, Nature, vol. 5(10), pages 1314-1322, October.
    22. Cimenler, Oguz & Reeves, Kingsley A. & Skvoretz, John, 2014. "A regression analysis of researchers’ social network metrics on their citation performance in a college of engineering," Journal of Informetrics, Elsevier, vol. 8(3), pages 667-682.
    23. Christian Leibel & Lutz Bornmann, 2024. "What do we know about the disruption index in scientometrics? An overview of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(1), pages 601-639, January.
    24. Daria Maltseva & Vladimir Batagelj, 2020. "iMetrics: the development of the discipline with many names," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 313-359, October.
    25. Weihua Li & Tomaso Aste & Fabio Caccioli & Giacomo Livan, 2019. "Early coauthorship with top scientists predicts success in academic careers," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    26. Shalabh, 2021. "Statistical inference via data science," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1155-1155, July.
    27. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile-based bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    28. Abhay S. D. Rajput & Sangeeta Sharma, 2021. "India: draft science policy calls for public engagement," Nature, Nature, vol. 592(7852), pages 26-26, April.
    29. Lutz Bornmann & Robin Haunschild & Loet Leydesdorff, 2018. "Reference publication year spectroscopy (RPYS) of Eugene Garfield’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 439-448, February.
    30. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile‐based bibliometric indicators," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    31. Lisa Mandle & Analisa Shields-Estrada & Rebecca Chaplin-Kramer & Matthew G. E. Mitchell & Leah L. Bremer & Jesse D. Gourevitch & Peter Hawthorne & Justin A. Johnson & Brian E. Robinson & Jeffrey R. Sm, 2021. "Increasing decision relevance of ecosystem service science," Nature Sustainability, Nature, vol. 4(2), pages 161-169, February.
    32. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    33. Sune Lehmann & Andrew D. Jackson & Benny E. Lautrup, 2008. "A quantitative analysis of indicators of scientific performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(2), pages 369-390, August.
    34. James Wilsdon, 2015. "We need a measured approach to metrics," Nature, Nature, vol. 523(7559), pages 129-129, July.
    35. Leydesdorff, Loet & Bornmann, Lutz & Marx, Werner & Milojević, Staša, 2014. "Referenced Publication Years Spectroscopy applied to iMetrics: Scientometrics, Journal of Informetrics, and a relevant subset of JASIST," Journal of Informetrics, Elsevier, vol. 8(1), pages 162-174.
    36. Juntao Zheng & Niancai Liu, 2015. "Mapping of important international academic awards," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 763-791, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2023. "A heuristic approach based on Leiden rankings to identify outliers: evidence from Italian universities in the European landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 483-510, January.
    3. Yang, Wenlong & Wang, Yang, 2024. "Exploring team creativity: The nexus between freshness and experience," Journal of Informetrics, Elsevier, vol. 18(4).
    4. Martin Baily & David Byrne & Aidan Kane & Paul Soto, 2025. "Generative AI at the Crossroads: Light Bulb, Dynamo, or Microscope?," Papers 2505.14588, arXiv.org.
    5. Alex J. Yang & Hongcun Gong & Yuhao Wang & Chao Zhang & Sanhong Deng, 2024. "Rescaling the disruption index reveals the universality of disruption distributions in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(1), pages 561-580, January.
    6. Rainer Frietsch & Sonia Gruber & Lutz Bornmann, 2025. "The definition of highly cited researchers: the effect of different approaches on the empirical outcome," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(2), pages 881-907, February.
    7. Weihua Li & Sam Zhang & Zhiming Zheng & Skyler J. Cranmer & Aaron Clauset, 2022. "Untangling the network effects of productivity and prominence among scientists," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.
    9. Michael Färber & Melissa Coutinho & Shuzhou Yuan, 2023. "Biases in scholarly recommender systems: impact, prevalence, and mitigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2703-2736, May.
    10. Malte Hückstädt, 2023. "Ten reasons why research collaborations succeed—a random forest approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1923-1950, March.
    11. Li, Meiling & Wang, Yang & Du, Haifeng & Bai, Aruhan, 2024. "Motivating innovation: The impact of prestigious talent funding on junior scientists," Research Policy, Elsevier, vol. 53(9).
    12. Zhuanlan Sun & C. Clark Cao & Sheng Liu & Yiwei Li & Chao Ma, 2024. "Behavioral consequences of second-person pronouns in written communications between authors and reviewers of scientific papers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Lutz Bornmann, 2024. "Skewed distributions of scientists’ productivity: a research program for the empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(4), pages 2455-2468, April.
    14. Thomas, Duncan Andrew & Ramos-Vielba, Irene, 2022. "Reframing study of research(er) funding towards configurations and trails," SocArXiv uty2v, Center for Open Science.
    15. Peng, Xianzhe & Xu, Huixin & Shi, Jin, 2024. "Are the bibliometric growth patterns of excellent scholars similar? From the analysis of ACM Fellows," Journal of Informetrics, Elsevier, vol. 18(3).
    16. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    17. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    18. Zhang, Yang & Wang, Yang & Du, Haifeng & Havlin, Shlomo, 2024. "Delayed citation impact of interdisciplinary research," Journal of Informetrics, Elsevier, vol. 18(1).
    19. Katchanov, Yurij L. & Markova, Yulia V. & Shmatko, Natalia A., 2023. "Uncited papers in the structure of scientific communication," Journal of Informetrics, Elsevier, vol. 17(2).
    20. Jiang, Zhuoren & Lin, Tianqianjin & Huang, Cui, 2023. "Deep representation learning of scientific paper reveals its potential scholarly impact," Journal of Informetrics, Elsevier, vol. 17(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:4:s1751157724000737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.