IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.14588.html
   My bibliography  Save this paper

Generative AI at the Crossroads: Light Bulb, Dynamo, or Microscope?

Author

Listed:
  • Martin Baily
  • David Byrne
  • Aidan Kane
  • Paul Soto

Abstract

With the advent of generative AI (genAI), the potential scope of artificial intelligence has increased dramatically, but the future effect of genAI on productivity remains uncertain with the effect of the technology on the innovation process a crucial open question. Some labor-saving innovations, such as the light bulb, temporarily raise productivity growth as adoption spreads, but the effect fades when the market is saturated; that is, the level of output per hour is permanently higher but the growth rate is not. In contrast, two types of technologies stand out as having longer-lived effects on productivity growth. First, there are technologies known as general-purpose technologies (GPTs). GPTs are (1) widely adopted, (2) spur abundant knock-on innovations (new goods and services, process efficiencies, and business reorganization), and (3) improve continuously, refreshing this innovation cycle; the electric dynamo is an example. Second, there are inventions of methods of invention (IMIs). IMIs increase the efficiency of the research and development process, generating new ideas more quickly and cheaply; the compound microscope is an example. We show that GenAI has the characteristics of both a GPT and an IMI -- an encouraging sign. Even so, for genAI to boost productivity growth, its contribution will have to exceed the fading growth effects of past IT innovations baked into the trend, including predecessor AI technologies.

Suggested Citation

  • Martin Baily & David Byrne & Aidan Kane & Paul Soto, 2025. "Generative AI at the Crossroads: Light Bulb, Dynamo, or Microscope?," Papers 2505.14588, arXiv.org.
  • Handle: RePEc:arx:papers:2505.14588
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.14588
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2025. "Generative AI at Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 140(2), pages 889-942.
    2. Charles R. Hulten, 1978. "Growth Accounting with Intermediate Inputs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 45(3), pages 511-518.
    3. Joshua Ettinger & Friederike E. L. Otto & E. Lisa F. Schipper, 2021. "Storytelling can be a powerful tool for science," Nature, Nature, vol. 589(7842), pages 352-352, January.
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Shalabh, 2021. "Statistical inference via data science," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 1155-1155, July.
    6. Trajtenberg, Manuel, 2018. "AI as the next GPT: a Political-Economy Perspective," CEPR Discussion Papers 12721, C.E.P.R. Discussion Papers.
    7. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(1), pages 128-159, March.
    8. Moses Abramovitz, 1956. "Resource and Output Trends in the United States since 1870," NBER Books, National Bureau of Economic Research, Inc, number abra56-1, March.
    9. Steven J. Davis & John Haltiwanger, 2014. "Labor Market Fluidity and Economic Performance," NBER Working Papers 20479, National Bureau of Economic Research, Inc.
    10. Mitcham, Carl & Emeritus,, 2021. "Science policy and democracy," Technology in Society, Elsevier, vol. 67(C).
    11. Jaemin Seo & SangKyeun Kim & Azarakhsh Jalalvand & Rory Conlin & Andrew Rothstein & Joseph Abbate & Keith Erickson & Josiah Wai & Ricardo Shousha & Egemen Kolemen, 2024. "Avoiding fusion plasma tearing instability with deep reinforcement learning," Nature, Nature, vol. 626(8000), pages 746-751, February.
    12. Moses Abramovitz, 1956. "Resource and Output Trends in the United States since 1870," NBER Chapters, in: Resource and Output Trends in the United States since 1870, pages 1-23, National Bureau of Economic Research, Inc.
    13. Shouhuai Xu & Moti Yung & Jingguo Wang, 2021. "Seeking Foundations for the Science of Cyber Security," Information Systems Frontiers, Springer, vol. 23(2), pages 263-267, April.
    14. Abhay S. D. Rajput & Sangeeta Sharma, 2021. "India: draft science policy calls for public engagement," Nature, Nature, vol. 592(7852), pages 26-26, April.
    15. Nikhil Agarwal & Alex Moehring & Pranav Rajpurkar & Tobias Salz, 2023. "Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology," NBER Working Papers 31422, National Bureau of Economic Research, Inc.
    16. Lisa Mandle & Analisa Shields-Estrada & Rebecca Chaplin-Kramer & Matthew G. E. Mitchell & Leah L. Bremer & Jesse D. Gourevitch & Peter Hawthorne & Justin A. Johnson & Brian E. Robinson & Jeffrey R. Sm, 2021. "Increasing decision relevance of ecosystem service science," Nature Sustainability, Nature, vol. 4(2), pages 161-169, February.
    17. Campbell, Gareth & Turner, John D., 2012. "Dispelling the Myth of the Naive Investor during the British Railway Mania, 1845–1846," Business History Review, Cambridge University Press, vol. 86(1), pages 3-41, April.
    18. Jean J. Wang & Sarah X. Shao & Fred Y. Ye, 2021. "Identifying 'seed' papers in sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6001-6011, July.
    19. Leland D. Crane & Michael Green & Paul E. Soto, 2025. "Measuring AI Uptake in the Workplace," FEDS Notes 2025-02-05, Board of Governors of the Federal Reserve System (U.S.).
    20. Johan S. G. Chu & James A. Evans, 2021. "Slowed canonical progress in large fields of science," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(41), pages 2021636118-, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.
    2. Bornmann, Lutz & Haunschild, Robin, 2024. "The Prize Winner Index (PWI): A proposal for an indicator based on scientific prizes," Journal of Informetrics, Elsevier, vol. 18(4).
    3. Michael Färber & Melissa Coutinho & Shuzhou Yuan, 2023. "Biases in scholarly recommender systems: impact, prevalence, and mitigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2703-2736, May.
    4. Malte Hückstädt, 2023. "Ten reasons why research collaborations succeed—a random forest approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1923-1950, March.
    5. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2022. "Using the Leiden Rankings as a Heuristics: Evidence from Italian universities in the European landscape," LEM Papers Series 2022/08, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Li, Meiling & Wang, Yang & Du, Haifeng & Bai, Aruhan, 2024. "Motivating innovation: The impact of prestigious talent funding on junior scientists," Research Policy, Elsevier, vol. 53(9).
    7. Alex J. Yang & Hongcun Gong & Yuhao Wang & Chao Zhang & Sanhong Deng, 2024. "Rescaling the disruption index reveals the universality of disruption distributions in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(1), pages 561-580, January.
    8. Rainer Frietsch & Sonia Gruber & Lutz Bornmann, 2025. "The definition of highly cited researchers: the effect of different approaches on the empirical outcome," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(2), pages 881-907, February.
    9. Zhuanlan Sun & C. Clark Cao & Sheng Liu & Yiwei Li & Chao Ma, 2024. "Behavioral consequences of second-person pronouns in written communications between authors and reviewers of scientific papers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Thomas, Duncan Andrew & Ramos-Vielba, Irene, 2022. "Reframing study of research(er) funding towards configurations and trails," SocArXiv uty2v, Center for Open Science.
    11. Weihua Li & Sam Zhang & Zhiming Zheng & Skyler J. Cranmer & Aaron Clauset, 2022. "Untangling the network effects of productivity and prominence among scientists," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Cinzia Daraio & Simone Di Leo & Loet Leydesdorff, 2023. "A heuristic approach based on Leiden rankings to identify outliers: evidence from Italian universities in the European landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 483-510, January.
    13. Yang, Wenlong & Wang, Yang, 2024. "Exploring team creativity: The nexus between freshness and experience," Journal of Informetrics, Elsevier, vol. 18(4).
    14. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    15. Lutz Bornmann, 2024. "Skewed distributions of scientists’ productivity: a research program for the empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(4), pages 2455-2468, April.
    16. Katchanov, Yurij L. & Markova, Yulia V. & Shmatko, Natalia A., 2023. "Uncited papers in the structure of scientific communication," Journal of Informetrics, Elsevier, vol. 17(2).
    17. Jiang, Zhuoren & Lin, Tianqianjin & Huang, Cui, 2023. "Deep representation learning of scientific paper reveals its potential scholarly impact," Journal of Informetrics, Elsevier, vol. 17(1).
    18. repec:osf:socarx:aep9v_v1 is not listed on IDEAS
    19. Peng, Xianzhe & Xu, Huixin & Shi, Jin, 2024. "Are the bibliometric growth patterns of excellent scholars similar? From the analysis of ACM Fellows," Journal of Informetrics, Elsevier, vol. 18(3).
    20. Liang, Zhentao & Ba, Zhichao & Mao, Jin & Li, Gang, 2023. "Research complexity increases with scientists’ academic age: Evidence from library and information science," Journal of Informetrics, Elsevier, vol. 17(1).
    21. Pedro Pessoa & Steve Pressé, 2023. "How many submissions are needed to discover friendly suggested reviewers?," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.14588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.