IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13130-4.html
   My bibliography  Save this article

Early coauthorship with top scientists predicts success in academic careers

Author

Listed:
  • Weihua Li

    (University College London
    London School of Economics and Political Sciences)

  • Tomaso Aste

    (University College London
    London School of Economics and Political Sciences)

  • Fabio Caccioli

    (University College London
    London School of Economics and Political Sciences
    London Mathematical Laboratory)

  • Giacomo Livan

    (University College London
    London School of Economics and Political Sciences)

Abstract

We examined the long-term impact of coauthorship with established, highly-cited scientists on the careers of junior researchers in four scientific disciplines. Here, using matched pair analysis, we find that junior researchers who coauthor work with top scientists enjoy a persistent competitive advantage throughout the rest of their careers, compared to peers with similar early career profiles but without top coauthors. Such early coauthorship predicts a higher probability of repeatedly coauthoring work with top-cited scientists, and, ultimately, a higher probability of becoming one. Junior researchers affiliated with less prestigious institutions show the most benefits from coauthorship with a top scientist. As a consequence, we argue that such institutions may hold vast amounts of untapped potential, which may be realised by improving access to top scientists.

Suggested Citation

  • Weihua Li & Tomaso Aste & Fabio Caccioli & Giacomo Livan, 2019. "Early coauthorship with top scientists predicts success in academic careers," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13130-4
    DOI: 10.1038/s41467-019-13130-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13130-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13130-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13130-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.