IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Extensive-form games and strategic complementarities

  • Echenique, Federico

I prove the subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games of strategic complements: the set of subgame-perfect equilibria is a non-empty, complete lattice. For this purpose I introduce a device that allows the study of the set of subgame-perfect equilibria as the set of fixed points of a correspondence. The correspondence has a natural interpretation. My results are limited because extensive-form games of strategic complementarities turn out| surprisingly|to be a very restrictive class of games.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6WFW-49BS9RM-7/2/717d88f55ddb3cfad1f06b569a63ac41
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 46 (2004)
Issue (Month): 2 (February)
Pages: 348-364

as
in new window

Handle: RePEc:eee:gamebe:v:46:y:2004:i:2:p:348-364
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/622836

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harris, Christopher, 1985. "A characterisation of the perfect equilibria of infinite horizon games," Journal of Economic Theory, Elsevier, vol. 37(1), pages 99-125, October.
  2. Vives, X., 1988. "Nash Equilibrium With Strategic Complementarities," UFAE and IAE Working Papers 107-88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  3. Amir, R., 1991. "Sensitivity analysis of multi-sector optimal economic dynamics," CORE Discussion Papers 1991006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Martin J Osborne & Ariel Rubinstein, 2009. "A Course in Game Theory," Levine's Bibliography 814577000000000225, UCLA Department of Economics.
  5. Milgrom, P. & Shannon, C., 1991. "Monotone Comparative Statics," Papers 11, Stanford - Institute for Thoretical Economics.
  6. Federico Echenique, 2000. "Comparative Statics by Adaptive Dynamics and The Correspondence Principle," Econometric Society World Congress 2000 Contributed Papers 1906, Econometric Society.
  7. Leo K. Simon and Maxwell B. Stinchcombe., 1987. "Extensive Form Games in Continuous Time: Pure Strategies," Economics Working Papers 8746, University of California at Berkeley.
  8. Harris, Christopher J, 1985. "Existence and Characterization of Perfect Equilibrium in Games of Perfect Information," Econometrica, Econometric Society, vol. 53(3), pages 613-28, May.
  9. Amir, Rabah, 1996. "Continuous Stochastic Games of Capital Accumulation with Convex Transitions," Games and Economic Behavior, Elsevier, vol. 15(2), pages 111-131, August.
  10. Harris, Christopher & Reny, Philip & Robson, Arthur, 1995. "The Existence of Subgame-Perfect Equilibrium in Continuous Games with Almost Perfect Information: A Case for Public Randomization," Econometrica, Econometric Society, vol. 63(3), pages 507-44, May.
  11. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, June.
  12. Fudenberg, Drew & Levine, David, 1983. "Subgame-perfect equilibria of finite- and infinite-horizon games," Journal of Economic Theory, Elsevier, vol. 31(2), pages 251-268, December.
  13. Hellwig, Martin & Leininger, Wolfgang, 1987. "On the existence of subgame-perfect equilibrium in infinite-action games of perfect information," Journal of Economic Theory, Elsevier, vol. 43(1), pages 55-75, October.
  14. Zhou Lin, 1994. "The Set of Nash Equilibria of a Supermodular Game Is a Complete Lattice," Games and Economic Behavior, Elsevier, vol. 7(2), pages 295-300, September.
  15. Milgrom, Paul & Roberts, John, 1990. "Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities," Econometrica, Econometric Society, vol. 58(6), pages 1255-77, November.
  16. Curtat, Laurent O., 1996. "Markov Equilibria of Stochastic Games with Complementarities," Games and Economic Behavior, Elsevier, vol. 17(2), pages 177-199, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:46:y:2004:i:2:p:348-364. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.