IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v22y2017icp95-100.html
   My bibliography  Save this article

Implementing and testing the Maximum Drawdown at Risk

Author

Listed:
  • Mendes, Beatriz Vaz de Melo
  • Lavrado, Rafael Coelho

Abstract

Financial managers are mainly concerned about long lasting accumulated large losses which may lead to massive money withdrawals. To assess this risk feeling we compute the Maximum Drawdown, the largest price loss of an investment during some fixed time period. The Maximum Drawdown at Risk has become an important risk measure for commodity trading advisors, hedge funds managers, and regulators. In this study we propose an estimation methodology based on Monte Carlo simulations and empirically validate the procedure using international stock indices. We find that this tool provides more accurate market risk control and may be used to manage portfolio exposure, being useful to practitioners and financial analysts.

Suggested Citation

  • Mendes, Beatriz Vaz de Melo & Lavrado, Rafael Coelho, 2017. "Implementing and testing the Maximum Drawdown at Risk," Finance Research Letters, Elsevier, vol. 22(C), pages 95-100.
  • Handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:95-100
    DOI: 10.1016/j.frl.2017.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612317300156
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276.
    5. Libor Pospisil & Jan Vecer, 2010. "Portfolio sensitivity to changes in the maximum and the maximum drawdown," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 617-627.
    6. Riccardo Rebonato & Valerio Gaspari, 2006. "Analysis of drawdowns and drawups in the US$ interest-rate market," Quantitative Finance, Taylor & Francis Journals, vol. 6(4), pages 297-326.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Foort Hamelink & Martin Hoesli, 2004. "Maximum drawdown and the allocation to real estate," Journal of Property Research, Taylor & Francis Journals, vol. 21(1), pages 5-29, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Risk management; Maximum drawdown; ARMA-GARCH; Simulations;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:95-100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/frl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.