IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v89y2023ics1057521923002533.html
   My bibliography  Save this article

The market quality effects of sub-second frequent batch auctions: Evidence from dark trading restrictions

Author

Listed:
  • Zhang, Zeyu
  • Ibikunle, Gbenga

Abstract

Recent European regulatory restrictions on dark trading induced an increase in sub-second frequent batch/periodic auctions (PA). We exploit this development to investigate the effects of PA on market quality. The restrictions are linked to an observable increase in PA and an economically meaningful loss of liquidity. PA is also associated with a significant decline in liquidity and informational efficiency. However, consistent with Budish et al. (2015 – The Quarterly Journal of Economics, 130, 1547), increased execution via PA leads to a decline in adverse selection costs, which underscores its potential as a trading mechanism for addressing latency arbitrage and the technological arms race.

Suggested Citation

  • Zhang, Zeyu & Ibikunle, Gbenga, 2023. "The market quality effects of sub-second frequent batch auctions: Evidence from dark trading restrictions," International Review of Financial Analysis, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002533
    DOI: 10.1016/j.irfa.2023.102737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521923002533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibikunle, Gbenga, 2015. "Opening and closing price efficiency: Do financial markets need the call auction?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 208-227.
    2. Andriy Shkilko & Konstantin Sokolov, 2020. "Every Cloud Has a Silver Lining: Fast Trading, Microwave Connectivity, and Trading Costs," Journal of Finance, American Finance Association, vol. 75(6), pages 2899-2927, December.
    3. Schnitzlein, Charles R, 1996. "Call and Continuous Trading Mechanisms under Asymmetric Information: An Experimental Investigation," Journal of Finance, American Finance Association, vol. 51(2), pages 613-636, June.
    4. Chang, Rosita P. & Rhee, S. Ghon & Stone, Gregory R. & Tang, Ning, 2008. "How does the call market method affect price efficiency? Evidence from the Singapore Stock Market," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2205-2219, October.
    5. Wah, Elaine & Wellman, Michael P., 2016. "Latency arbitrage in fragmented markets: A strategic agent-based analysis," Algorithmic Finance, IOS Press, vol. 5(3-4), pages 69-93.
    6. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    7. Chelley-Steeley, Patricia L., 2008. "Market quality changes in the London Stock Market," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2248-2253, October.
    8. Amihud, Yakov & Mendelson, Haim & Lauterbach, Beni, 1997. "Market microstructure and securities values: Evidence from the Tel Aviv Stock Exchange," Journal of Financial Economics, Elsevier, vol. 45(3), pages 365-390, September.
    9. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    10. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    11. Jiang, Christine X. & Likitapiwat, Tanakorn & McInish, Thomas H., 2012. "Information Content of Earnings Announcements: Evidence from After-Hours Trading," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(6), pages 1303-1330, December.
    12. Johann, Thomas & Putnins, Talis & Sagade, Satchit & Westheide, Christian, 2019. "Quasi-dark trading: The effects of banning dark pools in a world of many alternatives," SAFE Working Paper Series 253, Leibniz Institute for Financial Research SAFE.
    13. Hans Degryse & Frank de Jong & Vincent van Kervel, 2015. "The Impact of Dark Trading and Visible Fragmentation on Market Quality," Review of Finance, European Finance Association, vol. 19(4), pages 1587-1622.
    14. Michael Goldstein & Albert J. Menkveld, 2014. "High-Frequency Traders and Market Structure," The Financial Review, Eastern Finance Association, vol. 49(2), pages 333-344, May.
    15. Madhavan, Ananth, 1992. "Trading Mechanisms in Securities Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 607-641, June.
    16. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    17. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    18. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    19. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    20. Conrad, Jennifer & Wahal, Sunil, 2020. "The term structure of liquidity provision," Journal of Financial Economics, Elsevier, vol. 136(1), pages 239-259.
    21. Ibikunle, Gbenga & Li, Youwei & Mare, Davide & Sun, Yuxin, 2021. "Dark matters: The effects of dark trading restrictions on liquidity and informational efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    22. Foley, Sean & Putniņš, Tālis J., 2016. "Should we be afraid of the dark? Dark trading and market quality," Journal of Financial Economics, Elsevier, vol. 122(3), pages 456-481.
    23. Barclay, Michael J. & Hendershott, Terrence & Jones, Charles M., 2008. "Order Consolidation, Price Efficiency, and Extreme Liquidity Shocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(1), pages 93-121, March.
    24. Charles Cao & Eric Ghysels & Frank Hatheway, 2000. "Price Discovery without Trading: Evidence from the Nasdaq Preopening," Journal of Finance, American Finance Association, vol. 55(3), pages 1339-1365, June.
    25. Menkveld, Albert J. & Yueshen, Bart Zhou & Zhu, Haoxiang, 2017. "Shades of darkness: A pecking order of trading venues," Journal of Financial Economics, Elsevier, vol. 124(3), pages 503-534.
    26. Chelley-Steeley, Patricia, 2009. "Price synchronicity: The closing call auction and the London stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(5), pages 777-791, December.
    27. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    28. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    29. Haoxiang Zhu, 2014. "Do Dark Pools Harm Price Discovery?," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 747-789.
    30. Comerton-Forde, Carole & Putniņš, Tālis J., 2015. "Dark trading and price discovery," Journal of Financial Economics, Elsevier, vol. 118(1), pages 70-92.
    31. Avner Kalay & Li Wei & Avi Wohl, 2002. "Continuous Trading or Call Auctions: Revealed Preferences of Investors at the Tel Aviv Stock Exchange," Journal of Finance, American Finance Association, vol. 57(1), pages 523-542, February.
    32. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    33. Brogaard, Jonathan & Garriott, Corey, 2019. "High-Frequency Trading Competition," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(4), pages 1469-1497, August.
    34. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    35. Comerton-Forde, Carole & Ting Lau, Sie & McInish, Thomas, 2007. "Opening and closing behavior following the introduction of call auctions in Singapore," Pacific-Basin Finance Journal, Elsevier, vol. 15(1), pages 18-35, January.
    36. Hans Degryse & Frank de Jong & Vincent van Kervel, 2015. "The Impact of Dark Trading and Visible Fragmentation on Market Quality," Review of Finance, European Finance Association, vol. 19(4), pages 1587-1622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thibaut Mastrolia & Tianrui Xu, 2024. "Clearing time randomization and transaction fees for auction market design," Papers 2405.09764, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibikunle, Gbenga & Rzayev, Khaladdin, 2023. "Volatility and dark trading: Evidence from the Covid-19 pandemic," The British Accounting Review, Elsevier, vol. 55(4).
    2. Ibikunle, Gbenga & Li, Youwei & Mare, Davide & Sun, Yuxin, 2021. "Dark matters: The effects of dark trading restrictions on liquidity and informational efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    3. Ibikunle, Gbenga, 2015. "Opening and closing price efficiency: Do financial markets need the call auction?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 208-227.
    4. Ibikunle, Gbenga & Aquilina, Matteo & Diaz-Rainey, Ivan & Sun, Yuxin, 2021. "City goes dark: Dark trading and adverse selection in aggregate markets," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 1-22.
    5. Ibikunle, Gbenga, 2018. "Trading places: Price leadership and the competition for order flow," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 178-200.
    6. Jiayi Li & Sumei Luo & Guangyou Zhou, 2021. "Call auction, continuous trading and closing price formation," Quantitative Finance, Taylor & Francis Journals, vol. 21(6), pages 1037-1065, June.
    7. Jonathan Brogaard & Jing Pan, 2022. "Dark Pool Trading and Information Acquisition," The Review of Financial Studies, Society for Financial Studies, vol. 35(5), pages 2625-2666.
    8. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    9. Gbenga Ibikunle & Davide Mare & Yuxin Sun, 2020. "The paradoxical effects of market fragmentation on adverse selection risk and market efficiency," The European Journal of Finance, Taylor & Francis Journals, vol. 26(14), pages 1439-1461, September.
    10. Hatheway, Frank & Kwan, Amy & Zheng, Hui, 2017. "An Empirical Analysis of Market Segmentation on U.S. Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2399-2427, December.
    11. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    12. Ya‐Kai Chang & Robin K. Chou & J. Jimmy Yang, 2020. "A rare move: The effects of switching from a closing call auction to a continuous trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 308-328, March.
    13. Oliver Linton & Soheil Mahmoodzadeh, 2018. "Implications of High-Frequency Trading for Security Markets," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 237-259, August.
    14. Ben Ammar, Imen & Hellara, Slaheddine & Ghadhab, Imen, 2020. "High-frequency trading and stock liquidity: An intraday analysis," Research in International Business and Finance, Elsevier, vol. 53(C).
    15. Benjamin Clapham & Martin Haferkorn & Kai Zimmermann, 2023. "The Impact of High-Frequency Trading on Modern Securities Markets," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(1), pages 7-24, February.
    16. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    17. Nimalendran, Mahendrarajah & Rzayev, Khaladdin & Sagade, Satchit, 2024. "High-frequency trading in the stock market and the costs of options market making," Journal of Financial Economics, Elsevier, vol. 159(C).
    18. Nilabhra Bhattacharya & Bidisha Chakrabarty & Xu (Frank) Wang, 2020. "High-frequency traders and price informativeness during earnings announcements," Review of Accounting Studies, Springer, vol. 25(3), pages 1156-1199, September.
    19. Marta Khomyn, 2020. "Essays on Modern Market Structure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2020, January-A.
    20. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).

    More about this item

    Keywords

    Periodic auctions; Dark trading; MiFID II; Latency arbitrage; Liquidity; Informational efficiency;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.