IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v47y2016icp281-296.html
   My bibliography  Save this article

A note on the relationship between high-frequency trading and latency arbitrage

Author

Listed:
  • Manahov, Viktor

Abstract

We develop three artificial stock markets populated with two types of market participants — HFT scalpers and aggressive high frequency traders (HFTrs). We simulate real-life trading at the millisecond interval by applying Strongly Typed Genetic Programming (STGP) to real-time data from Cisco Systems, Intel and Microsoft. We observe that HFT scalpers are able to calculate NASDAQ NBBO (National Best Bid and Offer) at least 1.5ms ahead of the NASDAQ SIP (Security Information Processor), resulting in a large number of latency arbitrage opportunities. We also demonstrate that market efficiency is negatively affected by the latency arbitrage activity of HFT scalpers, with no countervailing benefit in volatility or any other measured variable. To improve market quality, and eliminate the socially wasteful arms race for speed, we propose batch auctions in every 70ms of trading.

Suggested Citation

  • Manahov, Viktor, 2016. "A note on the relationship between high-frequency trading and latency arbitrage," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 281-296.
  • Handle: RePEc:eee:finana:v:47:y:2016:i:c:p:281-296
    DOI: 10.1016/j.irfa.2016.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521916301090
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasbrouck, Joel & Saar, Gideon, 2009. "Technology and liquidity provision: The blurring of traditional definitions," Journal of Financial Markets, Elsevier, vol. 12(2), pages 143-172, May.
    2. Michael Goldstein & Tina Viljoen & P. Joakim Westerholm & Hui Zheng, 2014. "Algorithmic Trading, Liquidity, and Price Discovery: An Intraday Analysis of the SPI 200 Futures," The Financial Review, Eastern Finance Association, vol. 49(2), pages 245-270, May.
    3. Michael Goldstein & Jonathan Brogaard & Terrence Hendershott & Stefan Hunt & Carla Ysusi, 2014. "High-Frequency Trading and the Execution Costs of Institutional Investors," The Financial Review, Eastern Finance Association, vol. 49(2), pages 345-369, May.
    4. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    5. Chen, Shu-Heng & Yeh, Chia-Hsuan, 1997. "Toward a computable approach to the efficient market hypothesis: An application of genetic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 1043-1063, June.
    6. Thierry Foucault & Johan Hombert & Ioanid Roşu, 2016. "News Trading and Speed," Journal of Finance, American Finance Association, vol. 71(1), pages 335-382, February.
    7. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    8. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(04), pages 1001-1024, August.
    9. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    10. Ready, Mark J, 1999. "The Specialist's Discretion: Stopped Orders and Price Improvement," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1075-1112.
    11. Michael Goldstein & Michael A. Goldstein & Pavitra Kumar & Frank C. Graves, 2014. "Computerized and High-Frequency Trading," The Financial Review, Eastern Finance Association, vol. 49(2), pages 177-202, May.
    12. Michael Goldstein & Elvis Jarnecic & Mark Snape, 2014. "The Provision of Liquidity by High-Frequency Participants," The Financial Review, Eastern Finance Association, vol. 49(2), pages 371-394, May.
    13. Stoll, Hans R. & Schenzler, Christoph, 2006. "Trades outside the quotes: Reporting delay, trading option, or trade size?," Journal of Financial Economics, Elsevier, vol. 79(3), pages 615-653, March.
    14. Michael Goldstein & Shengwei Ding & John Hanna & Terrence Hendershott, 2014. "How Slow Is the NBBO? A Comparison with Direct Exchange Feeds," The Financial Review, Eastern Finance Association, vol. 49(2), pages 313-332, May.
    15. Michael Goldstein & Albert J. Menkveld, 2014. "High-Frequency Traders and Market Structure," The Financial Review, Eastern Finance Association, vol. 49(2), pages 333-344, May.
    16. Hirshleifer, David & Subrahmanyam, Avanidhar & Titman, Sheridan, 1994. " Security Analysis and Trading Patterns When Some Investors Receive Information before Others," Journal of Finance, American Finance Association, vol. 49(5), pages 1665-1698, December.
    17. Thomas H. McInish & James Upson, 2013. "The Quote Exception Rule: Giving High Frequency Traders an Unintended Advantage," Financial Management, Financial Management Association International, vol. 42(3), pages 481-501, September.
    18. Easley, David & Hendershott, Terrence & Ramadorai, Tarun, 2014. "Leveling the trading field," Journal of Financial Markets, Elsevier, vol. 17(C), pages 65-93.
    19. Brogaard, Jonathan & Hendershott, Terrence & Riordan, Ryan, 2013. "High frequency trading and price discovery," Working Paper Series 1602, European Central Bank.
    20. Michael Goldstein & Jeffrey H. Harris & Mohsen Saad, 2014. "The Sound of Silence," The Financial Review, Eastern Finance Association, vol. 49(2), pages 203-230, May.
    21. Tom McInish & James Upson & Robert A. Wood, 2014. "The Flash Crash: Trading Aggressiveness, Liquidity Supply, and the Impact of Intermarket Sweep Orders," The Financial Review, Eastern Finance Association, vol. 49(3), pages 481-509, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Agent-based modelling; High frequency trading; Algorithmic trading; Market regulation; Market efficiency; Genetic programming;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:47:y:2016:i:c:p:281-296. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.