IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Toward a Computable Approach to the Efficient Market Hypothesis: An Application of Genetic Programming

Listed author(s):
  • Shu-Heng Chen
  • Chia-Hsuan Yeh

    (Department of Economics, National Chengchi University, Taiwan)

From a computation-theoretic standpoint, this paper formalizes the notion of unpredictability in the efficient market hypothesis (EMH) by a biological-based search program, i.e., genetic programming (GP). This formalization differs from the traditional notion based on probabilistic independence in its treatment of search. While search plays an important role in the EMH, tradtional notion does not formalize serach in a way such that it can be implemented, and it turns out that the EMH based on this notion is practically uncomputable. Compared with the traditional notion, a GP-based search provided an explicit and efficient search program upon which an objective measure for predictability can be formalized in terms of search intensity and chance of success in the search. This will be illustrated by an example of applying GP to predict chaotic time series. Then, the EMH based on this notion will be exemplified by an application to the Taiwan and U.S. stock market. A short-term sample of TAIEX and S\&P 500 with the highest complexity defined by Rissanen's MDLP (Minimum Description Length Principle) is chosen and tested. It is found that, while linear models cannot predict better than the random walk, a GP-based search can beat random walk by 50\%. It therefore confirms the belief that while the short-term nonlinear regularities might still exist, the search costs of discovering them might be too high to make the exploitation of these regularities profitable, hence efficient market hypothesis can sustain from this perspective.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of California at Los Angeles, Center for Computable Economics in its series Working Papers with number _011.

in new window

Date of creation:
Handle: RePEc:wop:callce:_011
Contact details of provider: Postal:
(310) 825 1011

Phone: (310) 825 1011
Fax: (310) 825 9528
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Savit, R., 1989. "Nonlinearities And Chaotic Effects In Options Prices," Papers 184, Columbia - Center for Futures Markets.
  2. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
  3. Willey, Thomas, 1992. "Testing for nonlinear dependence in daily stock indices," Journal of Economics and Business, Elsevier, vol. 44(1), pages 63-76, February.
  4. Hinich, Melvin J & Patterson, Douglas M, 1985. "Evidence of Nonlinearity in Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(1), pages 69-77, January.
  5. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
  6. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
  7. repec:gue:guelph:1988-15 is not listed on IDEAS
  8. Frank, Murray & Gencay, Ramazan & Stengos, Thanasis, 1988. "International chaos?," European Economic Review, Elsevier, vol. 32(8), pages 1569-1584, October.
  9. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wop:callce:_011. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.