IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp766-777.html
   My bibliography  Save this article

A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration

Author

Listed:
  • Go, Gyu-Hyun
  • Lee, Seung-Rae
  • N.V., Nikhil
  • Yoon, Seok

Abstract

This study presents a novel performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration. The influence of rainfall infiltration on the thermal characteristics of shallow trenches is examined using infiltration analyses, and then a numerical analysis study is conducted in order to investigate how rainfall infiltration affects the performance of HGHEs (horizontal ground heat exchangers). According to the thermal performance test results in unsaturated ground with a varying thermal conductivity profile, the rainfall infiltration results in a widening fluid temperature gap between the inlet and outlet, and it increases the thermal efficiency compared with that without rainfall. Furthermore, in fully saturated ground, groundwater advection has a positive influence on the performance of the heat exchanger, and the advection effect varies with the local ground conditions such as hydraulic conductivity and void ratios. In the cooling mode, the free convection phenomenon occurs in shallow trenches, and this fluid circulation attenuates the ground temperature increases due to the heat source, which leads to a significantly faster heat steady state. However, noticeable free convection only occurs if the ground has a high permeability coefficient.

Suggested Citation

  • Go, Gyu-Hyun & Lee, Seung-Rae & N.V., Nikhil & Yoon, Seok, 2015. "A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration," Energy, Elsevier, vol. 83(C), pages 766-777.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:766-777
    DOI: 10.1016/j.energy.2015.02.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500242X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Seok & Lee, Seung-Rae & Go, Gyu-Hyun, 2014. "A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers," Energy, Elsevier, vol. 71(C), pages 547-555.
    2. Pulat, Erhan & Coskun, Salih & Unlu, Kursat & Yamankaradeniz, Nurettin, 2009. "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey," Energy, Elsevier, vol. 34(9), pages 1284-1295.
    3. Yang, Weibo & Shi, Mingheng & Liu, Guangyuan & Chen, Zhenqian, 2009. "A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification," Applied Energy, Elsevier, vol. 86(10), pages 2005-2012, October.
    4. Florides, G. & Theofanous, E. & Iosif-Stylianou, I. & Tassou, S. & Christodoulides, P. & Zomeni, Z. & Tsiolakis, E. & Kalogirou, S. & Messaritis, V. & Pouloupatis, P. & Panayiotou, G., 2013. "Modeling and assessment of the efficiency of horizontal and vertical ground heat exchangers," Energy, Elsevier, vol. 58(C), pages 655-663.
    5. Eckert, E.R.G., 1976. "The ground used as energy source, energy sink, or for energy storage," Energy, Elsevier, vol. 1(3), pages 315-323.
    6. Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
    7. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D., 1994. "Use of the ground for heat dissipation," Energy, Elsevier, vol. 19(1), pages 17-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arif Widiatmojo & Sasimook Chokchai & Isao Takashima & Yohei Uchida & Kasumi Yasukawa & Srilert Chotpantarat & Punya Charusiri, 2019. "Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand," Energies, MDPI, vol. 12(7), pages 1-22, April.
    2. Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
    3. Cuny, Mathias & Lin, Jian & Siroux, Monica & Fond, Christophe, 2020. "Influence of rainfall events on the energy performance of an earth-air heat exchanger embedded in a multilayered soil," Renewable Energy, Elsevier, vol. 147(P2), pages 2664-2675.
    4. Gan, Guohui, 2018. "Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer," Energy, Elsevier, vol. 152(C), pages 877-887.
    5. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    6. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    7. Dinh, Ba Huu & Kim, Young-Sang & Yoon, Seok, 2022. "Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economic aspects," Renewable Energy, Elsevier, vol. 186(C), pages 505-516.
    8. Shi, Yu & Cui, Qiliang & Song, Xianzhi & Xu, Fuqiang & Song, Guofeng, 2022. "Study on thermal performances of a horizontal ground heat exchanger geothermal system with different configurations and arrangements," Renewable Energy, Elsevier, vol. 193(C), pages 448-463.
    9. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Xu, Zhengming & Zheng, Rui & Wang, Gaosheng & Lyu, Zehao, 2017. "Heat extraction performance simulation for various configurations of a downhole heat exchanger geothermal system," Energy, Elsevier, vol. 141(C), pages 1489-1503.
    10. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    11. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material," Renewable Energy, Elsevier, vol. 146(C), pages 2008-2023.
    12. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    13. Chengbin Zhang & Weibo Yang & Jingjing Yang & Suchen Wu & Yongping Chen, 2017. "Experimental Investigations and Numerical Simulation of Thermal Performance of a Horizontal Slinky-Coil Ground Heat Exchanger," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    14. Pavel Pauli & Pavel Neuberger & Radomír Adamovský, 2016. "Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 9(8), pages 1-13, July.
    15. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.
    16. Muhammad Asad & Vincenzo Guida & Alessandro Mauro, 2023. "Experimental and Numerical Analysis of the Efficacy of a Real Downhole Heat Exchanger," Energies, MDPI, vol. 16(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    3. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Ozyurt, Omer & Ekinci, Dundar Arif, 2011. "Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1257-1265, April.
    5. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    6. Sebarchievici, Calin & Sarbu, Ioan, 2015. "Performance of an experimental ground-coupled heat pump system for heating, cooling and domestic hot-water operation," Renewable Energy, Elsevier, vol. 76(C), pages 148-159.
    7. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    8. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    9. Man, Yi & Yang, Hongxing & Wang, Jinggang & Fang, Zhaohong, 2012. "In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone," Applied Energy, Elsevier, vol. 97(C), pages 913-920.
    10. Ioan Sarbu & Calin Sebarchievici, 2020. "Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed," Energies, MDPI, vol. 13(19), pages 1-19, September.
    11. Alberti, Luca & Antelmi, Matteo & Angelotti, Adriana & Formentin, Giovanni, 2018. "Geothermal heat pumps for sustainable farm climatization and field irrigation," Agricultural Water Management, Elsevier, vol. 195(C), pages 187-200.
    12. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    13. Blázquez, Cristina Sáez & Borge-Diez, David & Nieto, Ignacio Martín & Maté-González, Miguel Ángel & Martín, Arturo Farfán & González-Aguilera, Diego, 2021. "Investigating the potential of the slurry technology for sustainable pig farm heating," Energy, Elsevier, vol. 234(C).
    14. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    15. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    16. Badescu, Viorel, 2007. "Simple and accurate model for the ground heat exchanger of a passive house," Renewable Energy, Elsevier, vol. 32(5), pages 845-855.
    17. Stylianou, Iosifina Iosif & Florides, Georgios & Tassou, Savvas & Tsiolakis, Efthymios & Christodoulides, Paul, 2017. "Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers," Energy, Elsevier, vol. 127(C), pages 258-270.
    18. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    19. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    20. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:766-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.