IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5822-d441283.html
   My bibliography  Save this article

Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger

Author

Listed:
  • Weidong Lyu

    (Institute of Geotechnical and Underground Engineering, School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hefu Pu

    (Institute of Geotechnical and Underground Engineering, School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jiannan (Nick) Chen

    (Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA)

Abstract

This study presents a novel heat exchanger configuration, called a deeply penetrating U-shaped configuration, for energy piles. The outlet water temperature, temperature variation along the tube, and heat transfer rate are simulated and computed using Comsol Multiphysics software. The simulations are for the cooling mode. The proposed configuration is compared with traditional U-shaped and W-shaped configurations to prove its superiority. The thermal performance of the pile group is compared with that of a single pile to investigate the effects of the pile group on the heat transfer. A parametric analysis is performed to investigate the effects of several important parameters (i.e., pile spacing, pile diameter, soil type, and thermal parameters) on the heat transfer performance of an energy pile group with the proposed deeply penetrating U-shaped configuration. The results indicate that the corner pile indicates a nonnegligible heat transfer rate 6.8% and 9.9% higher than the central pile in quincuncial and squared arrangements. Purely from the standpoint of thermal performance, the pile spacing is recommended to be more than 6.8 times the pile diameter to reduce the influence of the pile group on the heat transfer capacity.

Suggested Citation

  • Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5822-:d:441283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    2. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    3. Suryatriyastuti, M.E. & Mroueh, H. & Burlon, S., 2012. "Understanding the temperature-induced mechanical behaviour of energy pile foundations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3344-3354.
    4. Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
    5. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    6. Yang, Weibo & Shi, Mingheng & Liu, Guangyuan & Chen, Zhenqian, 2009. "A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification," Applied Energy, Elsevier, vol. 86(10), pages 2005-2012, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Liu, Ryan Yin Wai & Taborda, David M.G., 2024. "The effects of thermal interference on the thermal performance of thermo-active pile groups," Renewable Energy, Elsevier, vol. 225(C).
    4. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    3. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    5. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
    6. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    7. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    8. Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    9. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    10. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    11. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    12. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    13. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    14. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    15. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    16. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    17. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
    18. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
    19. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    20. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5822-:d:441283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.