IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124006920.html
   My bibliography  Save this article

Heating and cooling geothermal systems in urban settings: The potential of energy micropiles

Author

Listed:
  • M.F, Yozy Kepdib
  • R.M, Singh
  • C, Madiai
  • J.A, Facciorusso

Abstract

Since the 1980s, the utilization of geostructures for heating and cooling buildings has evolved significantly, initially with base slabs and later expanding to include various structures like piles, retaining walls, and tunnels, collectively termed as energy geostructures. These systems facilitate heat exchange between the ground and buildings by circulating a heat exchange fluid through plastic pipes embedded within the geostructures. In the realm of structural rehabilitation and retrofitting, micropiles have gained preference over traditional piles due to their smaller installation equipment, reduced noise, and limited vibration, making them an attractive option, particularly in densely populated urban areas. However, despite the potential of energy micropiles (EMPs), they have received little attention compared to energy piles. This study conducts a comprehensive review on geothermal energy and EMPs, highlighting their potential in heating and cooling structures in urban areas. Their long-term heat exchange rates, typically ranging from 30 to 50 W/m, are influenced by factors such as pipe configuration, pipe diameter, fluid flow rate, soil thermal conductivity, groundwater presence, temperature differentials, and seasonal variations. The small dimensions of micropiles may lead to increased thermal resistance due to interference between U- shape pipes, while group installations can reduce individual micropile thermal efficiency. Moreover, significant thermal stresses are induced, and they increase with cycles. Optimal performance is achievable with corrugated pipes, a coaxial pipe configuration and intermittent operation. This study highlights the need for continued innovation and partnership to advance the adoption of EMPs, thereby enhancing energy efficiency, climate resilience, and environmental sustainability.

Suggested Citation

  • M.F, Yozy Kepdib & R.M, Singh & C, Madiai & J.A, Facciorusso, 2025. "Heating and cooling geothermal systems in urban settings: The potential of energy micropiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124006920
    DOI: 10.1016/j.rser.2024.114966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124006920
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    2. Ren, Lian-wei & Xu, Jian & Kong, Gang-qiang & Liu, Han-long, 2020. "Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles," Renewable Energy, Elsevier, vol. 147(P1), pages 1098-1106.
    3. Park, Hyunku & Lee, Seung-Rae & Yoon, Seok & Choi, Jung-Chan, 2013. "Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation," Applied Energy, Elsevier, vol. 103(C), pages 12-24.
    4. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    5. Zanchini, E. & Lazzari, S. & Priarone, A., 2010. "Improving the thermal performance of coaxial borehole heat exchangers," Energy, Elsevier, vol. 35(2), pages 657-666.
    6. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    7. Gao, Jun & Zhang, Xu & Liu, Jun & Li, Kuishan & Yang, Jie, 2008. "Numerical and experimental assessment of thermal performance of vertical energy piles: An application," Applied Energy, Elsevier, vol. 85(10), pages 901-910, October.
    8. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    9. Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    3. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    4. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    6. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    7. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    8. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    9. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    10. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    11. Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.
    12. Zhou, Yang & Wang, Jinyun & Li, Chong & Kong, Gangqiang & Li, Renrong, 2024. "Thermal interference process between two energy piles in 2D model using transparent soil," Energy, Elsevier, vol. 308(C).
    13. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    15. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    16. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    17. Ai, Zhi Yong & Yang, Lei & Ye, Jia Ming, 2025. "The performance of pipe-type energy piles with a raft in layered transversely isotropic media," Energy, Elsevier, vol. 325(C).
    18. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    19. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
    20. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124006920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.