IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i5p3344-3354.html
   My bibliography  Save this article

Understanding the temperature-induced mechanical behaviour of energy pile foundations

Author

Listed:
  • Suryatriyastuti, M.E.
  • Mroueh, H.
  • Burlon, S.

Abstract

This paper discusses physical process of thermal transfer in energy pile foundations, which function as structural support for the buildings as well as heat exchangers serving energy to the buildings. Derivation of conservation of energy balance is presented, depends on its type of heat transfer within a whole system of soil and foundation. In order to understand the mechanical implication behind their application, simulation numeric with finite difference method is conducted, concerning an energy pile in homogenous soil under static thermal load. The study takes into account two different conditions of contact between soil and pile: perfectly contact and sliding contact using frictional interface elements. The results show that temperature-induced mechanical behaviour of pile and soil is strongly related to the condition of contact between them. Further work is projected to consider a more appropriate law that corresponds to cyclic thermal loading of energy piles due to its seasonal cooling and heating operation throughout the year.

Suggested Citation

  • Suryatriyastuti, M.E. & Mroueh, H. & Burlon, S., 2012. "Understanding the temperature-induced mechanical behaviour of energy pile foundations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3344-3354.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3344-3354
    DOI: 10.1016/j.rser.2012.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112001566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
    2. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    5. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
    6. Ghasemi-Fare, Omid & Basu, Prasenjit, 2016. "Predictive assessment of heat exchange performance of geothermal piles," Renewable Energy, Elsevier, vol. 86(C), pages 1178-1196.
    7. Paludetto, Delphine & Lorente, Sylvie, 2016. "Modeling the heat exchanges between a datacenter and neighboring buildings through an underground loop," Renewable Energy, Elsevier, vol. 93(C), pages 502-509.
    8. Bourne-Webb, Peter & Burlon, Sebastien & Javed, Saqib & Kürten, Sylvia & Loveridge, Fleur, 2016. "Analysis and design methods for energy geostructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 402-419.
    9. Barla, Marco & Di Donna, Alice & Santi, Alessandro, 2020. "Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling," Renewable Energy, Elsevier, vol. 147(P2), pages 2654-2663.
    10. Bourne-Webb, P.J. & Bodas Freitas, T.M., 2020. "Thermally-activated piles and pile groups under monotonic and cyclic thermal loading–A review," Renewable Energy, Elsevier, vol. 147(P2), pages 2572-2581.
    11. Banerjee, Arundhuti & Chakraborty, Tanusree & Matsagar, Vasant, 2019. "Dynamic analysis of an offshore monopile foundation used as heat exchanger for energy extraction," Renewable Energy, Elsevier, vol. 131(C), pages 518-548.
    12. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    13. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    14. Ren, Lian-wei & Xu, Jian & Kong, Gang-qiang & Liu, Han-long, 2020. "Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles," Renewable Energy, Elsevier, vol. 147(P1), pages 1098-1106.
    15. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    16. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    17. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3344-3354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.