IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp172-191.html
   My bibliography  Save this article

Energy piles under lateral loading: Analytical and numerical investigations

Author

Listed:
  • Heidari, Bahareh
  • Akbari Garakani, Amir
  • Mokhtari Jozani, Sahar
  • Hashemi Tari, Pooyan

Abstract

In this paper, thermomechanical (TM) behavior of laterally loaded energy piles is investigated through analytical and numerical studies. Accordingly, the ultimate lateral load capacity, and the internal moment and horizontal displacement of the pile under service lateral loads, were assessed. Initially, a thermo-elastic-based analytical solution was proposed, and afterwards, a 3D numerical finite element (FE) model was constructed to investigate the effect of different soil parameters, temperature variation and mechanical load conditions on the behavior of energy piles in different soils. Then, the analytical and numerical results were validated against experimental data, and vast analytical/numerical studies were carried out on the TM parameters affecting the behavior of laterally loaded energy piles. Finally, considering the analytical and numerical results, adjusting relationships were introduced to estimate the lateral bearing capacity and the maximum lateral displacement parameters, more precisely. The results showed that in clayey and sandy soils, the ultimate lateral bearing capacity increases by increasing the temperature or by decreasing the external moment. Moreover, heating was found to have an increasing effect on the internal moments and the maximum lateral displacements of the piles embedded in clayey soils, but it had a decreasing effect on the piles embedded in sandy soils.

Suggested Citation

  • Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:172-191
    DOI: 10.1016/j.renene.2021.09.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    2. Bourne-Webb, P.J. & Bodas Freitas, T.M., 2020. "Thermally-activated piles and pile groups under monotonic and cyclic thermal loading–A review," Renewable Energy, Elsevier, vol. 147(P2), pages 2572-2581.
    3. Suryatriyastuti, M.E. & Mroueh, H. & Burlon, S., 2012. "Understanding the temperature-induced mechanical behaviour of energy pile foundations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3344-3354.
    4. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    5. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    7. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    8. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    9. Liu, Hongwei & Maghoul, Pooneh & Bahari, Ako & Kavgic, Miroslava, 2019. "Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada," Renewable Energy, Elsevier, vol. 136(C), pages 1266-1280.
    10. Sutman, Melis & Speranza, Gianluca & Ferrari, Alessio & Larrey-Lassalle, Pyrène & Laloui, Lyesse, 2020. "Long-term performance and life cycle assessment of energy piles in three different climatic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1177-1191.
    11. Jelušič, Primož & Žlender, Bojan, 2020. "Determining optimal designs for conventional and geothermal energy piles," Renewable Energy, Elsevier, vol. 147(P2), pages 2633-2642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    3. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    4. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    5. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
    6. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    7. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    8. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    9. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
    10. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    11. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    12. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    13. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    14. Junlin Wang & Zhao Li, 2021. "Experimental Study of Thermal Response of Vertically Loaded Energy Pipe Pile," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
    15. Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
    16. Barla, Marco & Di Donna, Alice & Santi, Alessandro, 2020. "Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling," Renewable Energy, Elsevier, vol. 147(P2), pages 2654-2663.
    17. Daniel Castro Medina & MCarmen Guerrero Delgado & Teresa Rocío Palomo Amores & Aurore Toulou & Jose Sánchez Ramos & Servando Álvarez Domínguez, 2022. "Climatic Control of Urban Spaces Using Natural Cooling Techniques to Achieve Outdoor Thermal Comfort," Sustainability, MDPI, vol. 14(21), pages 1-33, October.
    18. Sławomir Rabczak & Paweł Kut, 2020. "Analysis of Yearly Effectiveness of a Diaphragm Ground Heat Exchanger Supported by an Ultraviolet Sterilamp," Energies, MDPI, vol. 13(11), pages 1-7, June.
    19. García-Céspedes, J. & Arnó, G. & Herms, I. & de Felipe, J.J., 2020. "Characterisation of efficiency losses in ground source heat pump systems equipped with a double parallel stage: A case study," Renewable Energy, Elsevier, vol. 147(P2), pages 2761-2773.
    20. Ascione, Fabrizio & Borrelli, Martina & De Masi, Rosa Francesca & Vanoli, Giuseppe Peter, 2020. "Hourly operational assessment of HVAC systems in Mediterranean Nearly Zero-Energy Buildings: Experimental evaluation of the potential of ground cooling of ventilation air," Renewable Energy, Elsevier, vol. 155(C), pages 950-968.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:172-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.