IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003025.html
   My bibliography  Save this article

The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings

Author

Listed:
  • Ai, Zhi Yong
  • Feng, Wei Yong

Abstract

The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings is studied with the aid of the coupled finite element method - boundary element method (FEM-BEM). The single energy pile is simulated based on the finite element theory, which then is extended to energy pile groups. The global flexibility matrix for soils is obtained by considering the coupling effects of vertical and thermal loadings. The coupled FEM-BEM equation for the interaction between energy pile groups and soils is derived based on the displacement compatibility condition at the pile-soil interface. According to the displacement coordination condition and force balance in the rigid cap, the displacement of the cap and axial forces of pile groups can be solved. The presented theory is validated by comparing the calculated results with numerical simulations and field test results in existing literature. Finally, effects of the thermal loading, pile-soil stiffness ratio, pile spacing, cross-anisotropy of Young's modulus and the stratification are discussed.

Suggested Citation

  • Ai, Zhi Yong & Feng, Wei Yong, 2024. "The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003025
    DOI: 10.1016/j.energy.2024.130531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.