IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014738.html
   My bibliography  Save this article

Thermo-mechanical analysis of energy piled raft foundations in layered cross-anisotropic soils

Author

Listed:
  • Ai, Zhi Yong
  • Ye, Jia Ming

Abstract

The pile-soil-raft interaction and thermo-mechanical effects lead to broad attention in the analysis of the energy piled raft foundations. Natural soils are generally anisotropic and show obvious stratification. Influences of the cross-anisotropy and stratification on the performance of energy piled raft foundations are investigated in this paper. The raft and energy piles are modelled as a flexible plate and one-dimensional bars, respectively. Stiffness matrix equations of the raft and energy piles considering the thermal and mechanical loads are established based on the finite element method. The soils are modelled as the layered cross-anisotropic elastic media. The force-deformation relationships of nodes at the raft-soil and pile-soil interfaces are acquired based on the boundary element method. Then, displacement variables of the pile-soil interface onto the raft are condensed and the pile-soil-raft interaction is further simplified into the raft-soil interaction. The comparison with in-situ tests is made to verify the proposed method. Parametric analyses show that the top axial force of the center pile increases by approximately 5 % in the cooling condition and 12 % in the heating condition with the increase of the cross-anisotropic parameter m*, while it makes a negligible contribution to that of the corner and side pile.

Suggested Citation

  • Ai, Zhi Yong & Ye, Jia Ming, 2023. "Thermo-mechanical analysis of energy piled raft foundations in layered cross-anisotropic soils," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014738
    DOI: 10.1016/j.renene.2023.119558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.