Thermo-mechanical analysis of energy piled raft foundations in layered cross-anisotropic soils
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.119558
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
- Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
- Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
- Ai, Zhi Yong & Ye, Jia Ming & Zhao, Yong Zhi, 2022. "The performance analysis of energy piles in cross-anisotropic soils," Energy, Elsevier, vol. 255(C).
- Ding, Xuanming & Zhang, Dingxin & Bouazza, Abdelmalek & Wang, Chenglong & Kong, Gangqiang, 2022. "Thermo-mechanical behaviour of energy piles in overconsolidated clay under various mechanical loading levels and thermal cycles," Renewable Energy, Elsevier, vol. 201(P1), pages 594-607.
- Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ai, Zhi Yong & Yang, Lei & Ye, Jia Ming, 2025. "The performance of pipe-type energy piles with a raft in layered transversely isotropic media," Energy, Elsevier, vol. 325(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ai, Zhi Yong & Yang, Lei & Ye, Jia Ming, 2025. "The performance of pipe-type energy piles with a raft in layered transversely isotropic media," Energy, Elsevier, vol. 325(C).
- Feng, Wei Yong & Ai, Zhi Yong, 2024. "Behavior analysis of energy piles in layered transversely isotropic saturated soils," Renewable Energy, Elsevier, vol. 226(C).
- Ai, Zhi Yong & Feng, Wei Yong, 2024. "The mechanical response of energy pile groups in layered cross-anisotropic soils under vertical loadings," Energy, Elsevier, vol. 292(C).
- Cruz-Peragón, F. & Gómez-de la Cruz, F.J. & Palomar-Carnicero, J.M. & López-García, R., 2022. "Optimal design of a hybrid ground source heat pump for an official building with thermal load imbalance and limited space for the ground heat exchanger," Renewable Energy, Elsevier, vol. 195(C), pages 381-394.
- Ding, Xuanming & Zhang, Dingxin & Bouazza, Abdelmalek & Wang, Chenglong & Kong, Gangqiang, 2022. "Thermo-mechanical behaviour of energy piles in overconsolidated clay under various mechanical loading levels and thermal cycles," Renewable Energy, Elsevier, vol. 201(P1), pages 594-607.
- Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
- Fattahian, Makan & Oliaei, Mohammad & Akbari Garakani, Amir & Kiani Fordoei, Mohammad Amir, 2024. "Numerical modeling of high-velocity groundwater flow influence on the thermal-hydraulic characteristics and energy extraction from energy piles," Renewable Energy, Elsevier, vol. 237(PD).
- Chang, Honglin & Kong, Gangqiang & Liu, Hanlong, 2025. "Estimation of the technical geothermal potential through energy piles at a small regional scale: A campus case study," Energy, Elsevier, vol. 320(C).
- Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
- McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
- Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
- Wang, Fang & You, Tian & Yang, Hengxu, 2025. "Performance analysis and operation optimization of photovoltaic/thermal assisted energy-pile ground source heat pump system in cold regions," Renewable Energy, Elsevier, vol. 244(C).
- Ayaz, Hassam & Faizal, Mohammed & Bouazza, Abdelmalek, 2024. "Energy, economic, and carbon emission analysis of a residential building with an energy pile system," Renewable Energy, Elsevier, vol. 220(C).
- Ahmadfard, Mohammadamin & Baniasadi, Ehsan, 2025. "Borehole thermal energy storage systems: A comprehensive review using bibliometric and qualitative tools," Applied Energy, Elsevier, vol. 387(C).
- Marco Belliardi & Nerio Cereghetti & Paola Caputo & Simone Ferrari, 2021. "A Method to Analyze the Performance of Geocooling Systems with Borehole Heat Exchangers. Results in a Monitored Residential Building in Southern Alps," Energies, MDPI, vol. 14(21), pages 1-18, November.
- Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
- Figueira, João S. & García Gil, Alejandro & Vieira, Ana & Michopoulos, Apostolos K. & Boon, David P. & Loveridge, Fleur & Cecinato, Francesco & Götzl, Gregor & Epting, Jannis & Zosseder, Kai & Bloemen, 2024. "Shallow geothermal energy systems for district heating and cooling networks: Review and technological progression through case studies," Renewable Energy, Elsevier, vol. 236(C).
- Hu, Shuaijun & Kong, Gangqiang & Zhang, Changsen & Fu, Jinghui & Li, Shiyao & Yang, Qing, 2024. "Data-driven models for the steady thermal performance prediction of energy piles optimized by metaheuristic algorithms," Energy, Elsevier, vol. 313(C).
- Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.