IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2973-d1060009.html
   My bibliography  Save this article

Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot

Author

Listed:
  • Seokjae Lee

    (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea)

  • Sangwoo Park

    (Department of Civil Engineering and Environment Sciences, Korea Military Academy, Seoul 01805, Republic of Korea)

  • Taek Hee Han

    (Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea)

  • Jongmuk Won

    (Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

  • Hangseok Choi

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea)

Abstract

A floor slab of buildings can be used as a ground heat exchanger by equipping heat exchange pipes with a horizontal layout, namely energy slabs. The thermal performance of conventional energy slabs is relatively low due to the interference with the ambient air temperature. This fatal drawback can be overcome by installing energy slabs in an underground parking lot, where the influence of ambient air is not significant. This study experimentally investigated the applicability of two types of energy slabs (floor type and wall type), which were constructed on the basement slab in an underground parking lot. In particular, an aerogel-type thermal insulation layer was fabricated in each energy slab to isolate it from the ambient air along with enhancing the structural stability against automobiles. In the thermal performance tests, the constructed energy slabs showed a thermal performance 265% higher than the conventional energy slabs. Moreover, the aerogel-type thermal insulation layer effectively prevented surface condensation. However, the thermal stress of 2350 kPa was induced by the cooling operation in the energy slabs, which means the energy slab should possess sufficient tensile strength to secure the structural integrity of the parking lot basement.

Suggested Citation

  • Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2973-:d:1060009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barla, Marco & Di Donna, Alice & Santi, Alessandro, 2020. "Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling," Renewable Energy, Elsevier, vol. 147(P2), pages 2654-2663.
    2. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    3. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    4. Sterpi, D. & Tomaselli, G. & Angelotti, A., 2020. "Energy performance of ground heat exchangers embedded in diaphragm walls: Field observations and optimization by numerical modelling," Renewable Energy, Elsevier, vol. 147(P2), pages 2748-2760.
    5. Insana, A. & Barla, M., 2020. "Experimental and numerical investigations on the energy performance of a thermo-active tunnel," Renewable Energy, Elsevier, vol. 152(C), pages 781-792.
    6. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    7. Lee, Seokjae & Park, Sangwoo & Won, Jongmuk & Choi, Hangseok, 2021. "Influential factors on thermal performance of energy slabs equipped with an insulation layer," Renewable Energy, Elsevier, vol. 174(C), pages 823-834.
    8. Nam, Yujin & Chae, Ho-Byung, 2014. "Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger," Energy, Elsevier, vol. 73(C), pages 933-942.
    9. Moon, Chung-Eun & Choi, Jong Min, 2015. "Heating performance characteristics of the ground source heat pump system with energy-piles and energy-slabs," Energy, Elsevier, vol. 81(C), pages 27-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    2. Lee, Seokjae & Park, Sangwoo & Won, Jongmuk & Choi, Hangseok, 2021. "Influential factors on thermal performance of energy slabs equipped with an insulation layer," Renewable Energy, Elsevier, vol. 174(C), pages 823-834.
    3. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    5. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    6. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    7. Nicholson, Sarah R. & Kober, Leya R. & Atefrad, Pedram & Mwesigye, Aggrey & Dworkin, Seth B., 2021. "The influence of geometry on the performance of a helical steel pile as a geo-exchange system," Renewable Energy, Elsevier, vol. 172(C), pages 714-727.
    8. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    9. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    10. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    11. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    12. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    13. Lee, Seokjae & Park, Sangwoo & Kang, Minkyu & Oh, Kwanggeun & Choi, Hangseok, 2022. "Effect of tube-in-tube configuration on thermal performance of coaxial-type ground heat exchanger," Renewable Energy, Elsevier, vol. 197(C), pages 518-527.
    14. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    15. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Bulmez, A.M. & Ciofoaia, V. & Năstase, G. & Dragomir, G. & Brezeanu, A.I. & Şerban, A., 2022. "An experimental work on the performance of a solar-assisted ground-coupled heat pump using a horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 183(C), pages 849-865.
    17. Salsuwanda Selamat & Akio Miyara & Keishi Kariya, 2015. "Analysis of Short Time Period of Operation of Horizontal Ground Heat Exchangers," Resources, MDPI, vol. 4(3), pages 1-17, July.
    18. Marco Belliardi & Nerio Cereghetti & Paola Caputo & Simone Ferrari, 2021. "A Method to Analyze the Performance of Geocooling Systems with Borehole Heat Exchangers. Results in a Monitored Residential Building in Southern Alps," Energies, MDPI, vol. 14(21), pages 1-18, November.
    19. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "Residential Buildings’ Foundations as a Ground Heat Exchanger and Comparison among Different Types in a Moderate Climate Country," Energies, MDPI, vol. 13(23), pages 1-22, November.
    20. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2973-:d:1060009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.