IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp674-681.html
   My bibliography  Save this article

An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland

Author

Listed:
  • Jankowski, Krzysztof Józef
  • Budzyński, Wojciech Stefan
  • Kijewski, Łukasz

Abstract

This paper discusses the results of a three-year study into energy efficiency in the production of oilseed crops of the family Brassicaceae in north-eastern Poland. The energy inputs per ha of winter rapeseed were determined at 26.29 GJ, and were 1.8-fold higher (spring rapeseed, white mustard) to more than 2.3-fold higher (Indian mustard) in comparison with spring oilseed crops. The potential use of energy accumulated in the biomass of winter rapeseed (314.4 GJ ha−1) was as follows: 18% – effective energy for the petrochemical industry (oil), and 82% – energy for the generation of heat and electricity (22% – oil cake and 60% – straw). The energy value of the biomass of spring oilseed crops was determined in the range of 96.8–149.0 GJ ha−1. Significant differences in the utilization of biomass as a renewable source of energy were noted between spring oilseed crops and winter rapeseed. The highest energy efficiency ratio of seed production was noted in winter rapeseed (4.92). The energy efficiency ratio of seed production in spring oilseed crops was 39% to 62–75% lower as compared with winter rapeseed. The energy efficiency ratio of oilseed crops increased (8.61–11.96) when the energy potential of straw was taken into account.

Suggested Citation

  • Jankowski, Krzysztof Józef & Budzyński, Wojciech Stefan & Kijewski, Łukasz, 2015. "An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland," Energy, Elsevier, vol. 81(C), pages 674-681.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:674-681
    DOI: 10.1016/j.energy.2015.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    2. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    3. Miller, Patrick & Kumar, Amit, 2013. "Development of emission parameters and net energy ratio for renewable diesel from Canola and Camelina," Energy, Elsevier, vol. 58(C), pages 426-437.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjay Singh Rathore & Subhash Babu & Kapila Shekhawat & Vinod K. Singh & Pravin Kumar Upadhyay & Rajiv Kumar Singh & Rishi Raj & Harveer Singh & Fida Mohammad Zaki, 2022. "Oilseed Brassica Species Diversification and Crop Geometry Influence the Productivity, Economics, and Environmental Footprints under Semi-Arid Regions," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    2. Al-Mansour, F. & Jejcic, V., 2017. "A model calculation of the carbon footprint of agricultural products: The case of Slovenia," Energy, Elsevier, vol. 136(C), pages 7-15.
    3. Matłok, Natalia & Gorzelany, Józef, 2020. "Assessment of cost and energy effectiveness of modified technologies for production of young fruit trees, taking into account the use of waste biomass for energy and soil amendment related purposes," Energy, Elsevier, vol. 190(C).
    4. Stolarski, Mariusz J. & Krzyżaniak, Michał & Kwiatkowski, Jacek & Tworkowski, Józef & Szczukowski, Stefan, 2018. "Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland," Energy, Elsevier, vol. 150(C), pages 770-780.
    5. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    6. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    7. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    8. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    9. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    10. Černiauskienė, Živilė & Raila, Algirdas Jonas & Zvicevičius, Egidijus & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Analysis of Artemisia dubia Wall. growth, preparation for biofuel and thermal conversion properties," Renewable Energy, Elsevier, vol. 118(C), pages 468-476.
    11. Krzysztof Józef Jankowski & Anna Nogalska, 2022. "Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland," Energies, MDPI, vol. 15(11), pages 1-18, May.
    12. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    13. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    14. Jankowski, Krzysztof Józef & Sokólski, Mateusz & Załuski, Dariusz, 2023. "Winter oilseed rape: Agronomic management in different tillage systems and energy balance," Energy, Elsevier, vol. 277(C).
    15. Jankowski, Krzysztof Józef & Dubis, Bogdan & Budzyński, Wojciech Stefan & Bórawski, Piotr & Bułkowska, Katarzyna, 2016. "Energy efficiency of crops grown for biogas production in a large-scale farm in Poland," Energy, Elsevier, vol. 109(C), pages 277-286.
    16. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    17. Dariusz Antoni Groth & Mateusz Sokólski & Krzysztof Józef Jankowski, 2020. "A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance," Energies, MDPI, vol. 13(18), pages 1-38, September.
    18. Stolarski, Mariusz J. & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan & Niksa, Dariusz, 2016. "Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment," Energy, Elsevier, vol. 113(C), pages 748-761.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    2. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    3. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    4. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    5. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    6. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    7. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    8. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    9. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    10. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    11. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    12. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    13. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    14. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach," Energy, Elsevier, vol. 36(5), pages 2765-2772.
    15. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    16. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    17. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    18. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    19. Aleksandra Minajeva & Algirdas Jasinskas & Rolandas Domeika & Edvardas Vaiciukevičius & Egidijus Lemanas & Stanisław Bielski, 2021. "The Study of the Faba Bean Waste and Potato Peels Recycling for Pellet Production and Usage for Energy Conversion," Energies, MDPI, vol. 14(10), pages 1-14, May.
    20. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:674-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.