IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp748-761.html
   My bibliography  Save this article

Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment

Author

Listed:
  • Stolarski, Mariusz J.
  • Krzyżaniak, Michał
  • Tworkowski, Józef
  • Szczukowski, Stefan
  • Niksa, Dariusz

Abstract

The aim of this study was to determine the energy input and energy efficiency of the production of willow, poplar and black locust chips in four-year harvest rotation. The highest energy input was made in poplar production when soil was enriched with lignin and by mineral fertilisation (33.02 GJ ha−1). For willow production it was 30.76 GJ ha−1 when lignin, mycorrhiza and mineral fertilisation were used. The energy input in the production of black locust was much lower. The largest energy gain was obtained in the production of poplar when soil was enriched with lignin and mineral fertilisation (673.7 GJ ha−1). A similar level of this parameter (669.7 GJ ha−1) was achieved in the production of willow when lignin, mycorrhiza and mineral fertilisation was used. In general, a higher energy gain was obtained in the production of willow and poplar than in the production of black locust. On the other hand, the best energy efficiency ratio was achieved for willow (28.9) in the option with lignin. The ratio for poplar production ranged from 19.7 to 25.9. On the other hand, the energy efficiency ratio for black locust ranged from 10.6 to 21.7.

Suggested Citation

  • Stolarski, Mariusz J. & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan & Niksa, Dariusz, 2016. "Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment," Energy, Elsevier, vol. 113(C), pages 748-761.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:748-761
    DOI: 10.1016/j.energy.2016.07.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216310210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    2. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    3. Jankowski, Krzysztof Józef & Budzyński, Wojciech Stefan & Kijewski, Łukasz, 2015. "An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland," Energy, Elsevier, vol. 81(C), pages 674-681.
    4. Scarlat, Nicolae & Dallemand, Jean-Franc¸ois & Banja, Manjola, 2013. "Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 595-606.
    5. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stolarski, Mariusz J. & Krzyżaniak, Michał & Kwiatkowski, Jacek & Tworkowski, Józef & Szczukowski, Stefan, 2018. "Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland," Energy, Elsevier, vol. 150(C), pages 770-780.
    2. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    3. Jakub Jan Zięty & Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzykowski & Michał Krzyżaniak, 2022. "Legal Framework for the Sustainable Production of Short Rotation Coppice Biomass for Bioeconomy and Bioenergy," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Černiauskienė, Živilė & Raila, Algirdas Jonas & Zvicevičius, Egidijus & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Analysis of Artemisia dubia Wall. growth, preparation for biofuel and thermal conversion properties," Renewable Energy, Elsevier, vol. 118(C), pages 468-476.
    5. Stolarski, Mariusz J. & Niksa, Dariusz & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan, 2019. "Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 461-475.
    6. Michał Krzyżaniak & Mariusz J. Stolarski & Kazimierz Warmiński, 2020. "Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments," Energies, MDPI, vol. 13(8), pages 1-15, April.
    7. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    8. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    9. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    10. Heinsoo, Katrin & Tali, Kadri, 2019. "Can various bioenergy technologies add value to each other?," Energy, Elsevier, vol. 175(C), pages 259-264.
    11. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Dariusz Załuski & Józef Tworkowski & Stefan Szczukowski, 2020. "Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity," Agriculture, MDPI, vol. 10(9), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    2. Stolarski, Mariusz J. & Krzyżaniak, Michał & Kwiatkowski, Jacek & Tworkowski, Józef & Szczukowski, Stefan, 2018. "Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland," Energy, Elsevier, vol. 150(C), pages 770-780.
    3. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    4. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    5. Jankowski, Krzysztof Józef & Dubis, Bogdan & Budzyński, Wojciech Stefan & Bórawski, Piotr & Bułkowska, Katarzyna, 2016. "Energy efficiency of crops grown for biogas production in a large-scale farm in Poland," Energy, Elsevier, vol. 109(C), pages 277-286.
    6. Jankowski, Krzysztof Józef & Sokólski, Mateusz & Załuski, Dariusz, 2023. "Winter oilseed rape: Agronomic management in different tillage systems and energy balance," Energy, Elsevier, vol. 277(C).
    7. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    8. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    9. Dariusz Antoni Groth & Mateusz Sokólski & Krzysztof Józef Jankowski, 2020. "A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance," Energies, MDPI, vol. 13(18), pages 1-38, September.
    10. Al-Mansour, F. & Jejcic, V., 2017. "A model calculation of the carbon footprint of agricultural products: The case of Slovenia," Energy, Elsevier, vol. 136(C), pages 7-15.
    11. Krzysztof Józef Jankowski & Anna Nogalska, 2022. "Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland," Energies, MDPI, vol. 15(11), pages 1-18, May.
    12. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    13. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    14. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    15. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    16. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    17. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    18. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    19. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    20. Peter, Christiane & Specka, Xenia & Aurbacher, Joachim & Kornatz, Peter & Herrmann, Christiane & Heiermann, Monika & Müller, Janine & Nendel, Claas, 2017. "The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation," Agricultural Systems, Elsevier, vol. 152(C), pages 67-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:748-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.