IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp266-275.html
   My bibliography  Save this article

The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine

Author

Listed:
  • Gonca, Guven
  • Sahin, Bahri
  • Parlak, Adnan
  • Ust, Yasin
  • Ayhan, Vezir
  • Cesur, İdris
  • Boru, Barış

Abstract

The application of the Miller cycle into the internal combustion engines is proposed to decrease NOx emissions, in the recent years. Another NOx control technique is the steam injection method (SIM). In this study, the application of these methods together into a single cylinder, direct injection diesel engine is experimentally and theoretically performed. Two different Miller cycles, which provide 5 and 10 crank angle (CA) retarding compared to standard condition, are applied with two different camshafts. SIM is applied at three different injection rates which are 10%, 20% and 30% of the fuel mass. The results obtained are compared with standard conditions in terms of the performance and emissions. The simulation results are verified with experimental data with non-notable errors. In the experimental results, NO and CO2 emissions decreased up to 48% and 2.2%; HC and CO emissions increased by 46% and 34% with the penalty by 6.4% and 9.2% for the effective power and efficiency. The optimum condition has been defined as 10 CA retarding and 30% steam injection rate (C62-S30) in terms of the maximum NO reduction. The results demonstrate that the combination can be applied into the diesel engines to minimize NO and CO2 emissions.

Suggested Citation

  • Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2014. "The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine," Energy, Elsevier, vol. 78(C), pages 266-275.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:266-275
    DOI: 10.1016/j.energy.2014.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rinaldini, Carlo Alberto & Mattarelli, Enrico & Golovitchev, Valeri I., 2013. "Potential of the Miller cycle on a HSDI diesel automotive engine," Applied Energy, Elsevier, vol. 112(C), pages 102-119.
    2. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Reciprocating heat-engine cycles," Applied Energy, Elsevier, vol. 81(4), pages 397-408, August.
    3. Kökkülünk, Görkem & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Gonca, Güven & Boru, Barış, 2014. "Theoretical and experimental investigation of steam injected diesel engine with EGR," Energy, Elsevier, vol. 74(C), pages 331-339.
    4. Mikalsen, R. & Wang, Y.D. & Roskilly, A.P., 2009. "A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications," Applied Energy, Elsevier, vol. 86(6), pages 922-927, June.
    5. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    6. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    7. Wang, Yaodong & Lin, Lin & Zeng, Shengchuo & Huang, Jincheng & Roskilly, Anthony P. & He, Yunxin & Huang, Xiaodong & Li, Shanping, 2008. "Application of the Miller cycle to reduce NOx emissions from petrol engines," Applied Energy, Elsevier, vol. 85(6), pages 463-474, June.
    8. Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    2. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    3. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    4. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    5. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    6. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    7. Kichol Noh & Changhee Lee, 2021. "Development of an Ignition System and Assessment of Engine Performance and Exhaust Characteristics of a Marine Gas Engine," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    8. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
    10. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    11. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    12. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    13. Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).
    14. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    15. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    16. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    2. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ust, Yasin & Ayhan, Vezir & Cesur, İdris & Boru, Barış, 2015. "Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters," Applied Energy, Elsevier, vol. 138(C), pages 11-20.
    3. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    4. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    5. Imperato, Matteo & Kaario, Ossi & Sarjovaara, Teemu & Larmi, Martti, 2016. "Split fuel injection and Miller cycle in a large-bore engine," Applied Energy, Elsevier, vol. 162(C), pages 289-297.
    6. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    7. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    8. Kichol Noh & Changhee Lee, 2021. "Development of an Ignition System and Assessment of Engine Performance and Exhaust Characteristics of a Marine Gas Engine," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    9. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    10. Edward Roper & Yaodong Wang & Zhichao Zhang, 2022. "Numerical Investigation of the Application of Miller Cycle and Low-Carbon Fuels to Increase Diesel Engine Efficiency and Reduce Emissions," Energies, MDPI, vol. 15(5), pages 1-20, February.
    11. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    12. Zhu, Sipeng & Deng, Kangyao & Liu, Sheng & Qu, Shuan, 2015. "Comparative analysis and evaluation of turbocharged Dual and Miller cycles under different operating conditions," Energy, Elsevier, vol. 93(P1), pages 75-87.
    13. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    14. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    15. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    16. Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia & Valentino, Gerardo, 2015. "Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine," Applied Energy, Elsevier, vol. 157(C), pages 777-788.
    17. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    18. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    19. Zhao, Jinxing & Xu, Min & Li, Mian & Wang, Bin & Liu, Shuangzhai, 2012. "Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method," Applied Energy, Elsevier, vol. 92(C), pages 492-502.
    20. Charalampos Georgiou & Ulugbek Azimov, 2020. "Analysis and Multi-Parametric Optimisation of the Performance and Exhaust Gas Emissions of a Heavy-Duty Diesel Engine Operating on Miller Cycle," Energies, MDPI, vol. 13(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:266-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.