IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp358-373.html
   My bibliography  Save this article

Experimental studies on the dual-fuel sequential combustion and emission simulation

Author

Listed:
  • Lu, Xingcai
  • Zhou, Xiaoxin
  • Ji, Libin
  • Yang, Zheng
  • Han, Dong
  • Huang, Chen
  • Huang, Zhen

Abstract

This study theoretically proposes and experimentally demonstrates the simultaneous reductions of NOx and soot using a novel combustion mode, (dual-fuel sequential combustion) DFSC, on a single-cylinder engine. DFSC introduces a well-mixed, lean fuel/air mixture into the cylinder by injecting high-cetane number fuel (n-heptane was used in this study) at the intake port followed by the direct injection of a high-octane number fuel (ethanol, iso-propanol, 1-butanol and iso-octane were used in this study) near the top dead center (TDC). Four fuel combinations (n-heptane/iso-octane, n-heptane/ethanol, n-heptane/iso-propanol, and n-heptane/1-butanol) were operated with the DFSC mode in this study, and the ignition mechanism and combustion processes of each fuel combination were investigated. Three types of burn modes of directly injected fuels were observed: active atmosphere-dominated ignition, active-thermal atmosphere-dominated ignition, and thermal atmosphere-dominated ignition. The ignition timings of the directly injected fuels were strongly dependent on the premixed n-heptane concentration and were slightly influenced by the charge cooling effects. In the present testing conditions, the n-heptane/ethanol DFSC showed almost smokeless and ultra-low NOx emissions at the maximum indicated (mean effective pressure) IMEP of 0.76 MPa. To increase understanding of the formation mechanisms of the HC and CO emissions in this combustion mode, three-dimensional (computational fluid dynamics) CFD coupled with reduced chemical kinetic mechanisms was used to simulate the n-heptane/iso-octane DFSC mode. Preliminary results show that the HC emissions originate primarily from the core region of the spray jet, where the fuel injection tip was unable to fully oxidize and burn. The CO emissions produce primarily at the boundary layer of the cylinder wall, piston ring crevice region, and combustion chamber bowl.

Suggested Citation

  • Lu, Xingcai & Zhou, Xiaoxin & Ji, Libin & Yang, Zheng & Han, Dong & Huang, Chen & Huang, Zhen, 2013. "Experimental studies on the dual-fuel sequential combustion and emission simulation," Energy, Elsevier, vol. 51(C), pages 358-373.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:358-373
    DOI: 10.1016/j.energy.2013.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    2. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    3. Komninos, N.P., 2009. "Modeling HCCI combustion: Modification of a multi-zone model and comparison to experimental results at varying boost pressure," Applied Energy, Elsevier, vol. 86(10), pages 2141-2151, October.
    4. Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2010. "Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine," Energy, Elsevier, vol. 35(4), pages 1829-1838.
    5. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    6. Yang, Dong-bo & Wang, Zhi & Wang, Jian-Xin & Shuai, Shi-jin, 2011. "Experimental study of fuel stratification for HCCI high load extension," Applied Energy, Elsevier, vol. 88(9), pages 2949-2954.
    7. Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xingcai & Qian, Yong & Yang, Zheng & Han, Dong & Ji, Jibin & Zhou, Xiaoxin & Huang, Zhen, 2014. "Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends," Energy, Elsevier, vol. 64(C), pages 707-718.
    2. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    3. Zhang, Chao & Zhang, Chunhua & Xue, Le & Li, Yangyang, 2017. "Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol," Energy, Elsevier, vol. 125(C), pages 439-448.
    4. Qian, Yong & Li, Hua & Han, Dong & Ji, Libin & Huang, Zhen & Lu, Xingcai, 2016. "Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane," Energy, Elsevier, vol. 111(C), pages 1003-1016.
    5. Ju, Dehao & Zhang, Tingting & Xiao, Jin & Qiao, Xinqi & Huang, Zhen, 2015. "Effect of droplet sizes on evaporation of a bi-component droplet at DME (dimethyl ether)/n-heptane-fueled engine conditions," Energy, Elsevier, vol. 86(C), pages 257-266.
    6. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    7. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Ma, Baodong & Yao, Anren & Yao, Chunde & Chen, Chao & Qu, Guofan & Wang, Wenchao & Ai, Youkai, 2021. "Multiple combustion modes existing in the engine operating in diesel methanol dual fuel," Energy, Elsevier, vol. 234(C).
    9. Liu, Haifeng & Wang, Xin & Zheng, Zunqing & Gu, Jingbo & Wang, Hu & Yao, Mingfa, 2014. "Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine," Energy, Elsevier, vol. 74(C), pages 741-752.
    10. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    11. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    12. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    13. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2016. "Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI+GPI) engine," Energy, Elsevier, vol. 111(C), pages 92-103.
    14. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    15. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    16. Lounici, Mohand Said & Loubar, Khaled & Tarabet, Lyes & Balistrou, Mourad & Niculescu, Dan-Catalin & Tazerout, Mohand, 2014. "Towards improvement of natural gas-diesel dual fuel mode: An experimental investigation on performance and exhaust emissions," Energy, Elsevier, vol. 64(C), pages 200-211.
    17. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    18. Wu, Horng-Wen & Wang, Ren-Hung & Chen, Ying-Chuan & Ou, Dung-Je & Chen, Teng-Yu, 2014. "Influence of port-inducted ethanol or gasoline on combustion and emission of a closed cycle diesel engine," Energy, Elsevier, vol. 64(C), pages 259-267.
    19. Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    3. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    4. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    5. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2019. "An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 256(C).
    6. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    7. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    8. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    9. Qian, Yong & Li, Hua & Han, Dong & Ji, Libin & Huang, Zhen & Lu, Xingcai, 2016. "Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane," Energy, Elsevier, vol. 111(C), pages 1003-1016.
    10. Zhang, Chao & Zhang, Chunhua & Xue, Le & Li, Yangyang, 2017. "Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol," Energy, Elsevier, vol. 125(C), pages 439-448.
    11. Cha, Junepyo & Yoon, Sungjun & Lee, Seokhwon & Park, Sungwook, 2015. "Effects of intake oxygen mole fraction on the near-stoichiometric combustion and emission characteristics of a CI (compression ignition) engine," Energy, Elsevier, vol. 80(C), pages 677-686.
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    13. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    14. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    15. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    16. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    17. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
    18. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    19. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    20. Qiu, Liang & Cheng, Xiaobei & Liu, Bei & Dong, Shijun & Bao, Zufeng, 2016. "Partially premixed combustion based on different injection strategies in a light-duty diesel engine," Energy, Elsevier, vol. 96(C), pages 155-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:358-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.