IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6251-d1227326.html
   My bibliography  Save this article

Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine

Author

Listed:
  • Dongzhi Gao

    (CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 300300, China)

  • Mubasher Ikram

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Chao Geng

    (China North Engine Research Institute, Tianjin 300405, China)

  • Yangyi Wu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Xiaodan Li

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Chao Jin

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin 300072, China)

  • Zunqing Zheng

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Mengliang Li

    (CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 300300, China)

  • Haifeng Liu

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

Abstract

The efficient application of oxygen-containing clean fuels in engines has always been a research focus. With the increase in ethanol production, the output of fusel as a co-product is also increasing. The application of fusel is also an effective way to lessen the consumption of fossil fuels. Therefore, the influences of fusel on performance and emissions were investigated in the current study on a six-cylinder heavy-duty compression-ignition engine and revolved around the WHSC test cycle. The three test fuels were diesel, F20NW (the volume proportion of anhydrous fusel is 20%, and the rest is pure diesel), and F20WW (the volume proportion of hydrous fusel is 20%). The addition of fusel improved BTE, reduced NOx and soot emissions, and thermal efficiency and emissions were further improved in combination with EGR optimization. In terms of WHSC, the improvement effect of hydrous fusel was the best. The equivalent fuel consumption, NOx, soot, and CO 2 emissions of F20WW were reduced by 1.77%, 37.49%, 17.38%, and 1.32%, respectively, with the optimization of EGR compared with pure diesel. The addition of 20% hydrous fusel combined with the introduction of EGR can be directly applied to existing diesel engines and achieve a simultaneous reduction in fuel consumption and emissions.

Suggested Citation

  • Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6251-:d:1227326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    2. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    3. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    4. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
    5. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    6. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    7. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wei, Lijiang & Yao, Chunde & Han, Guopeng & Pan, Wang, 2016. "Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine," Energy, Elsevier, vol. 95(C), pages 223-232.
    3. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    4. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    5. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    6. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    7. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    8. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    9. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    10. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    11. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    12. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    13. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    14. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
    15. Pan, Mingzhang & Zheng, Zeyuan & Huang, Rong & Zhou, Xiaorong & Huang, Haozhong & Pan, Jiaying & Chen, Zhaohui, 2019. "Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    16. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    18. Li, Jing & Yang, Wen Ming & Goh, Thong Ngee & An, Hui & Maghbouli, Amin, 2014. "Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design," Energy, Elsevier, vol. 78(C), pages 777-787.
    19. Liu, Haifeng & Xu, Jia & Zheng, Zunqing & Li, Shanju & Yao, Mingfa, 2013. "Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends," Energy, Elsevier, vol. 62(C), pages 215-223.
    20. Kakati, Dipankar & Biswas, Srijit & Banerjee, Rahul, 2021. "Parametric sensitivity analysis of split injection coupled varying methanol induced reactivity strategies on the exergy efficiency enhancement and emission reductions objectives in a biodiesel fuelled," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6251-:d:1227326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.