IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v50y2013icp326-332.html
   My bibliography  Save this article

Power consumption for stirring shear thinning fluids by two-blade impeller

Author

Listed:
  • Ameur, Houari
  • Bouzit, Mohamed

Abstract

In the present study, the power consumption in a stirred vessel by two-blade impeller has been investigated. 3D finite volume based computational fluid dynamics (CFD) simulations have been carried out. The tank used has a cylindrical shape with a flat bottom. The liquid height was kept equal to the vessel diameter. Study has been restricted to the laminar regime with Newtonian and shear thinning fluids, which are typical conditions of polymerization reactions. Analyses concern the effect of the impeller speed, the fluid rheology and some design parameters on the power consumption and a new correlation is proposed. Predictions have been compared with literature data and a satisfactory agreement has been found.

Suggested Citation

  • Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
  • Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:326-332
    DOI: 10.1016/j.energy.2012.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212008778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    2. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    3. Zhang, H.L. & Baeyens, J. & Tan, T.W., 2012. "Mixing phenomena in a large-scale fermenter of starch to bio-ethanol," Energy, Elsevier, vol. 48(1), pages 380-391.
    4. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    5. Costa, M. & Dell'Isola, M. & Massarotti, N., 2009. "Numerical analysis of the thermo-fluid-dynamic field in the combustion chamber of an incinerator plant," Energy, Elsevier, vol. 34(12), pages 2075-2086.
    6. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    7. Benajes, Jesús & Novella, Ricardo & García, Antonio & Arthozoul, Simon, 2011. "The role of in-cylinder gas density and oxygen concentration on late spray mixing and soot oxidation processes," Energy, Elsevier, vol. 36(3), pages 1599-1611.
    8. Fang, Guochang & Tian, Lixin & Sun, Mei & Fu, Min, 2012. "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system," Energy, Elsevier, vol. 40(1), pages 291-299.
    9. Su, A. & Ferng, Y.M. & Shih, J.C., 2010. "CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC," Energy, Elsevier, vol. 35(1), pages 16-27.
    10. Li, Qubo & Piechna, Janusz & Müller, Norbert, 2011. "Numerical simulation of novel axial impeller patterns to compress water vapor as refrigerant," Energy, Elsevier, vol. 36(5), pages 2773-2781.
    11. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    12. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    13. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2011. "Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion," Energy, Elsevier, vol. 36(1), pages 438-446.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    2. Ameur, Houari, 2015. "Energy efficiency of different impellers in stirred tank reactors," Energy, Elsevier, vol. 93(P2), pages 1980-1988.
    3. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    4. Mahmoodi-Eshkaftaki, Mahmood & Ebrahimi, Rahim, 2019. "The effect of blade angle of turbine impellers on anaerobic digestion efficiency in stirred digesters," Energy, Elsevier, vol. 178(C), pages 772-780.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    2. Kramer, Matthias & Terheiden, Kristina & Wieprecht, Silke, 2015. "Optimized design of impulse turbines in the micro-hydro sector concerning air detrainment processes," Energy, Elsevier, vol. 93(P2), pages 2604-2613.
    3. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    4. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    5. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    6. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    7. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    8. Zizhe Dong & Yuwen Liu & Yanzhou Qin, 2022. "Coupled FEM and CFD Modeling of Structure Deformation and Performance of PEMFC Considering the Effects of Membrane Water Content," Energies, MDPI, vol. 15(15), pages 1-19, July.
    9. Ameur, Houari, 2015. "Energy efficiency of different impellers in stirred tank reactors," Energy, Elsevier, vol. 93(P2), pages 1980-1988.
    10. Driss, Zied & Mlayeh, Olfa & Driss, Dorra & Maaloul, Makram & Abid, Mohamed Salah, 2014. "Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor," Energy, Elsevier, vol. 74(C), pages 506-517.
    11. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    12. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    13. Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
    14. Wang, Jiatang & Zhang, Houcheng & Cai, Weiwei & Ye, Weiqiang & Tong, Yiheng & Cheng, Hansong, 2023. "Effect of varying rib area portions on the performance of PEM fuel cells: Insights into design and optimization," Renewable Energy, Elsevier, vol. 217(C).
    15. Cleynen, Olivier & Engel, Sebastian & Hoerner, Stefan & Thévenin, Dominique, 2021. "Optimal design for the free-stream water wheel: A two-dimensional study," Energy, Elsevier, vol. 214(C).
    16. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    17. Liu, Zheng & Copeland, Colin, 2018. "New method for mapping radial turbines exposed to pulsating flows," Energy, Elsevier, vol. 162(C), pages 1205-1222.
    18. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    19. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    20. Yin, Chungen & Rosendahl, Lasse & Clausen, Sønnik & Hvid, Søren L., 2012. "Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons," Energy, Elsevier, vol. 41(1), pages 473-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:50:y:2013:i:c:p:326-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.