IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp716-732.html
   My bibliography  Save this article

Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition

Author

Listed:
  • Anand, Vishal

Abstract

This study deals with heat transfer and entropy generation analysis of pressure driven flow of a power law fluid in a microchannel. The microchannel is subject to uniform heat flux boundary condition at the walls. The slip at the walls has been modeled through three different slip laws, namely: non-linear Navier slip law, Hatzikiriakos slip law and asymptotic slip law. All the governing equations have been solved analytically. The effect of various friction coefficients of the slip laws on velocity distribution, temperature distribution, Nusselt number, entropy generation rate and Bejan number has been shown. The reason and the justification behind the trends observed have been discussed in detail. A comparison has been made between Hatzikiriakos slip law and asymptotic slip law with regards to Nusselt number and average entropy generation rate. It is observed that, for the same slip coefficients, the value of Nusselt number as predicted by Hatzikiriakos slip law is higher and average entropy generation rate is lower than the corresponding values predicted by asymptotic slip law; and this difference increases with increase in the value of slip coefficients.

Suggested Citation

  • Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:716-732
    DOI: 10.1016/j.energy.2014.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    2. Hajmohammadi, M.R. & Eskandari, H. & Saffar-Avval, M. & Campo, A., 2013. "A new configuration of bend tubes for compound optimization of heat and fluid flow," Energy, Elsevier, vol. 62(C), pages 418-424.
    3. Mahmud, Shohel & Fraser, Roydon Andrew, 2006. "Second law analysis of forced convection in a circular duct for non-Newtonian fluids," Energy, Elsevier, vol. 31(12), pages 2226-2244.
    4. Hajmohammadi, M.R. & Rahmani, M. & Campo, A. & Joneydi Shariatzadeh, O., 2014. "Optimal design of unequal heat flux elements for optimized heat transfer inside a rectangular duct," Energy, Elsevier, vol. 68(C), pages 609-616.
    5. Peter A. Thompson & Sandra M. Troian, 1997. "A general boundary condition for liquid flow at solid surfaces," Nature, Nature, vol. 389(6649), pages 360-362, September.
    6. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    7. López de Haro, M. & Cuevas, S. & Beltrán, A., 2014. "Heat transfer and entropy generation in the parallel plate flow of a power-law fluid with asymmetric convective cooling," Energy, Elsevier, vol. 66(C), pages 750-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torabi, Mohsen & Karimi, Nader & Zhang, Kaili, 2015. "Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources," Energy, Elsevier, vol. 93(P1), pages 106-127.
    2. Srinivasacharya, D. & Hima Bindu, K., 2015. "Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions," Energy, Elsevier, vol. 91(C), pages 72-83.
    3. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    4. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2015. "Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model," Energy, Elsevier, vol. 82(C), pages 922-938.
    5. Safari, Mehdi & Sheikhi, M. Reza H., 2014. "Large eddy simulation-based analysis of entropy generation in a turbulent nonpremixed flame," Energy, Elsevier, vol. 78(C), pages 451-457.
    6. Akbar, Noreen Sher, 2015. "Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field," Energy, Elsevier, vol. 82(C), pages 23-30.
    7. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
    8. Chee, Yi Shen & Ting, Tiew Wei & Hung, Yew Mun, 2015. "Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries," Energy, Elsevier, vol. 89(C), pages 382-401.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    2. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    3. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    4. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    5. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotically driven MHD flow and heat transfer in micro-channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 437-454.
    6. Haroon Ur Rasheed & Zeeshan Khan & Saeed Islam & Ilyas Khan & Juan L. G. Guirao & Waris Khan, 2019. "Investigation of Two-Dimensional Viscoelastic Fluid with Nonuniform Heat Generation over Permeable Stretching Sheet with Slip Condition," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    7. Jun Niu & Ceji Fu & Wenchang Tan, 2012. "Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    8. Lucia, Umberto, 2014. "Thermodynamic approach to nano-properties of cell membrane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 185-191.
    9. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    10. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    11. Yunmin Ran & Volfango Bertola, 2024. "Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences," Energies, MDPI, vol. 17(4), pages 1-30, February.
    12. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    13. Aurore Quelennec & Jason J. Gorman & Darwin R. Reyes, 2022. "Amontons-Coulomb-like slip dynamics in acousto-microfluidics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Shit, G.C. & Mondal, A. & Sinha, A. & Kundu, P.K., 2016. "Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1040-1057.
    15. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    16. Feng, Huijun & Chen, Lingen & Xie, Zhihui & Sun, Fengrui, 2015. "“Disc-point” heat and mass transfer constructal optimization for solid–gas reactors based on entropy generation minimization," Energy, Elsevier, vol. 83(C), pages 431-437.
    17. Srinivasacharya, D. & Hima Bindu, K., 2015. "Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions," Energy, Elsevier, vol. 91(C), pages 72-83.
    18. Escandón, J. & Bautista, O. & Méndez, F., 2013. "Entropy generation in purely electroosmotic flows of non-Newtonian fluids in a microchannel," Energy, Elsevier, vol. 55(C), pages 486-496.
    19. Jing Zhu & Jiahui Cao, 2019. "Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    20. Mahmoodi-Eshkaftaki, Mahmood & Ebrahimi, Rahim, 2019. "The effect of blade angle of turbine impellers on anaerobic digestion efficiency in stirred digesters," Energy, Elsevier, vol. 178(C), pages 772-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:716-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.