IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p888-d1338869.html
   My bibliography  Save this article

Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences

Author

Listed:
  • Yunmin Ran

    (Laboratory of Technical Physics, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK)

  • Volfango Bertola

    (Laboratory of Technical Physics, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK)

Abstract

In the last decades, molecular dynamics (MD) simulations established as an important tool for solving fluid flow and heat transfer problems at the nanoscale, with a significant perspective impact on a wide range of industrial and scientific applications. As usual, this happened with several scholarly papers on this topic being published in the same period. The present article provides a thorough review of molecular dynamics (MD) simulations in the domain of fluid flow and heat transfer. In the first section, a survey of the physical modelling of heat transfer phenomena by MD simulations is presented, focusing on bubble and droplet nucleation and interfacial thermal behaviours. Subsequently, MD simulations of fluid flow and heat transfer in nanochannels are discussed, including adiabatic flow, convective heat transfer, and two-phase flow. Particular emphasis was placed on critical phenomena such as evaporation and condensation, to assess the effects of confinement within nanochannels. Finally, some of the current and emerging challenges in MD simulations and suggests future research directions are discussed.

Suggested Citation

  • Yunmin Ran & Volfango Bertola, 2024. "Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences," Energies, MDPI, vol. 17(4), pages 1-30, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:888-:d:1338869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inaoka, Hajime & Ito, Nobuyasu, 2013. "Numerical simulation of pool boiling of a Lennard-Jones liquid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3863-3868.
    2. Peter A. Thompson & Sandra M. Troian, 1997. "A general boundary condition for liquid flow at solid surfaces," Nature, Nature, vol. 389(6649), pages 360-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haroon Ur Rasheed & Zeeshan Khan & Saeed Islam & Ilyas Khan & Juan L. G. Guirao & Waris Khan, 2019. "Investigation of Two-Dimensional Viscoelastic Fluid with Nonuniform Heat Generation over Permeable Stretching Sheet with Slip Condition," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    2. Aurore Quelennec & Jason J. Gorman & Darwin R. Reyes, 2022. "Amontons-Coulomb-like slip dynamics in acousto-microfluidics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jing Zhu & Jiahui Cao, 2019. "Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    4. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    5. Jafarimoghaddam, A. & Roşca, N.C. & Roşca, A.V. & Pop, I., 2021. "The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 60-76.
    6. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    7. Jun Niu & Ceji Fu & Wenchang Tan, 2012. "Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    8. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    9. Rahmatipour, Hamed & Azimian, Ahmad-Reza & Atlaschian, Omid, 2017. "Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 159-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:888-:d:1338869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.