IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p2843-2851.html
   My bibliography  Save this article

A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy

Author

Listed:
  • Liu, Pengfei

Abstract

A computational hydrodynamics method was formulated and implemented for horizontal axis tidal turbines. This paper presents a comparative analysis between screw propellers and horizontal axis turbines, in terms of geometry and motion parameters, inflow velocity analysis and the implementation methodologies. Comparison and analysis are given for a marine propeller model and a horizontal axis turbine model that have experimental measurements available in literature. Analysis and comparison are presented in terms of thrust coefficients, shaft torque/power coefficients, blade surface pressure distributions, and downstream velocity profiles. The effect of number of blades from 2 to 5, of a tidal turbine on hydrodynamic efficiency is also obtained and presented. The key implementation techniques and methodologies are provided in detail for the propeller based panel method tool to migrate as a prediction tool for tidal turbine. While the method has been proven to be accurate and robust for many propellers tested in the past, this numerical tool could be validated further for turbines. To further refine and validate the panel method for various turbines, it requires substantial additional experimental measurements. These measurements include downstream velocity profile by using LDV and/or SPIV, which are essential for numerical wake vortices descritization.

Suggested Citation

  • Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2843-2851
    DOI: 10.1016/j.energy.2010.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    2. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    3. Hoogedoorn, Eelco & Jacobs, Gustaaf B. & Beyene, Asfaw, 2010. "Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study," Energy, Elsevier, vol. 35(2), pages 778-785.
    4. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    2. Liu, Pengfei & Bose, Neil, 2012. "Prototyping a series of bi-directional horizontal axis tidal turbines for optimum energy conversion," Applied Energy, Elsevier, vol. 99(C), pages 50-66.
    3. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    4. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
    5. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    6. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
    7. Chen, Long & Lam, Wei-Haur, 2014. "Slipstream between marine current turbine and seabed," Energy, Elsevier, vol. 68(C), pages 801-810.
    8. Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "Wind turbine aerodynamics and loads control in wind shear flow," Energy, Elsevier, vol. 36(3), pages 1424-1434.
    9. Liu, Pengfei, 2015. "WIG (wing-in-ground) effect dual-foil turbine for high renewable energy performance," Energy, Elsevier, vol. 83(C), pages 366-378.
    10. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    11. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    12. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    13. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    14. Liu, Pengfei & Veitch, Brian, 2012. "Design and optimization for strength and integrity of tidal turbine rotor blades," Energy, Elsevier, vol. 46(1), pages 393-404.
    15. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    16. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    17. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    18. Liu, Penfei & Bose, Neil & Frost, Rowan & Macfarlane, Gregor & Lilienthal, Tim & Penesis, Irene & Windsor, Fraser & Thomas, Giles, 2014. "Model testing of a series of bi-directional tidal turbine rotors," Energy, Elsevier, vol. 67(C), pages 397-410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    2. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    3. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    4. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    5. Jeong, Min-Soo & Cha, Myung-Chan & Kim, Sang-Woo & Lee, In, 2015. "Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow," Energy, Elsevier, vol. 84(C), pages 518-532.
    6. Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "Wind turbine aerodynamics and loads control in wind shear flow," Energy, Elsevier, vol. 36(3), pages 1424-1434.
    7. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    8. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    9. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    10. Longfeng Hou & Sheng Shen & Ying Wang, 2021. "Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    11. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    12. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    13. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    14. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    15. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    16. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    17. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    18. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    19. Liu, Pengfei & Veitch, Brian, 2012. "Design and optimization for strength and integrity of tidal turbine rotor blades," Energy, Elsevier, vol. 46(1), pages 393-404.
    20. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2843-2851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.