IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp366-378.html
   My bibliography  Save this article

WIG (wing-in-ground) effect dual-foil turbine for high renewable energy performance

Author

Listed:
  • Liu, Pengfei

Abstract

Traditional HATs (horizontal axis turbines) are predominantly used for wind and tidal energy generation. HATs have higher power production than VATs (vertical axis turbines) for which also requires a rotational motion of their rotors. Existing HAT installations and operations are widely seen as wind turbines on land and hydrokinetic turbines underwater. However, the operation of both HAT and VAT requires large rotor diameter for large energy production. These introduce some disadvantages: requirement of large profile height on land and water depth underwater; high rotor tip speed and hence impact on surrounding ecology; and requirement of large kick-in speed and hence a low wind/tidal resource utilization or inapplicability in slow inflow energy sites. A dual-foil dynamic WIG (Wing-In-Ground) effect turbine, WIGT (Wing-in-ground effect turbine) for short, was developed and its renewable energy performance and characteristics were investigated. A performance comparison between traditional HATT (horizontal axis tidal turbine) and a WIGTT (wing-in-ground effect tidal turbine) was made, based on the tidal flow probability distribution of the Minas Passage, the Bay of Fundy, Canada. With about the same swept area, the WIGTT produces 1.73 times annual energy as an HATT. WIGT uses an active pitch control but the required power to pitch the foils was found to be about 10% generated power at the maximum. The use of trapezoidal pitch control produces 1.44 times as much power as either single-foil or dual-foil turbines. With a minimum gap of 16% chord between the foils, dynamic WIG effect produces 1.42 times as much energy. WIGT could generate 5 times power as much as a single foil with sinusoidal pitch and heave. WIGTs also have some outstanding advantages such as large power capacity under confined profile height on land or in shallow waters, power generation capability for low speed inflow, environmental friendly operation and better flow characteristics.

Suggested Citation

  • Liu, Pengfei, 2015. "WIG (wing-in-ground) effect dual-foil turbine for high renewable energy performance," Energy, Elsevier, vol. 83(C), pages 366-378.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:366-378
    DOI: 10.1016/j.energy.2015.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Pengfei & Bose, Neil, 2012. "Prototyping a series of bi-directional horizontal axis tidal turbines for optimum energy conversion," Applied Energy, Elsevier, vol. 99(C), pages 50-66.
    2. Liu, Pengfei, 2010. "A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy," Energy, Elsevier, vol. 35(7), pages 2843-2851.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    2. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    3. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    4. Jiang, W. & Mei, Z.Y. & Wu, F. & Han, A. & Xie, Y.H. & Xie, D.M., 2022. "Effect of shroud on the energy extraction performance of oscillating foil," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Penfei & Bose, Neil & Frost, Rowan & Macfarlane, Gregor & Lilienthal, Tim & Penesis, Irene & Windsor, Fraser & Thomas, Giles, 2014. "Model testing of a series of bi-directional tidal turbine rotors," Energy, Elsevier, vol. 67(C), pages 397-410.
    2. Wu, Baigong & Zhang, Xueming & Chen, Jianmei & Xu, Mingqi & Li, Shuangxin & Li, Guangzhe, 2013. "Design of high-efficient and universally applicable blades of tidal stream turbine," Energy, Elsevier, vol. 60(C), pages 187-194.
    3. Liu, Pengfei & Bose, Neil & Chen, Keqiang & Xu, Yiyi, 2018. "Development and optimization of dual-mode propellers for renewable energy," Renewable Energy, Elsevier, vol. 119(C), pages 566-576.
    4. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    5. Liu, Pengfei & Veitch, Brian, 2012. "Design and optimization for strength and integrity of tidal turbine rotor blades," Energy, Elsevier, vol. 46(1), pages 393-404.
    6. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    7. Tawil, Tony El & Charpentier, Jean Frédéric & Benbouzid, Mohamed, 2018. "Sizing and rough optimization of a hybrid renewable-based farm in a stand-alone marine context," Renewable Energy, Elsevier, vol. 115(C), pages 1134-1143.
    8. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    9. Yeo, Eng Jet & Kennedy, David M. & O'Rourke, Fergal, 2022. "Tidal current turbine blade optimisation with improved blade element momentum theory and a non-dominated sorting genetic algorithm," Energy, Elsevier, vol. 250(C).
    10. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2013. "Assessment of the impacts of tidal stream energy through high-resolution numerical modeling," Energy, Elsevier, vol. 61(C), pages 541-554.
    11. Yiyi Xu & Juin Ming Foong & Pengfei Liu, 2023. "Hydrodynamic Effect of Highly Skewed Horizontal-Axis Tidal Turbine (HATT) Rotors," Energies, MDPI, vol. 16(8), pages 1-16, April.
    12. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
    13. Zhang, Jisheng & Liu, Siyuan & Guo, Yakun & Sun, Ke & Guan, Dawei, 2022. "Performance of a bidirectional horizontal-axis tidal turbine with passive flow control devices," Renewable Energy, Elsevier, vol. 194(C), pages 997-1008.
    14. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    15. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2022. "A numerical performance analysis of a ducted, high-solidity tidal turbine in yawed flow conditions," Renewable Energy, Elsevier, vol. 193(C), pages 179-194.
    16. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    17. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    18. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    19. Ramos, V. & Carballo, R. & Álvarez, M. & Sánchez, M. & Iglesias, G., 2014. "A port towards energy self-sufficiency using tidal stream power," Energy, Elsevier, vol. 71(C), pages 432-444.
    20. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:366-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.