IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1635-d1366151.html
   My bibliography  Save this article

Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size

Author

Listed:
  • Jie Liu

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Yilin Zhu

    (State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Quanwei Liang

    (Dongfang Electric Machinery Co., Ltd., Deyang 618000, China)

  • Yexiang Xiao

    (State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Zhengshu Liu

    (China Three Gorges Tibet Energy Investment Corporation, Chengdu 610095, China)

  • Haijun Li

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Jian Ye

    (China Three Gorges Tibet Energy Investment Corporation, Chengdu 610095, China)

  • Nianhao Yang

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Haifeng Deng

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Qingpin Du

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

Abstract

The sediment erosion of Pelton turbine components is a major challenge in the operation and development of high-head water resources, especially in mountainous areas with high sediment yield. In this paper, a study using numerical simulation was conducted with different sediment particle sizes in the fine sand range. And the erosion mechanism of the Pelton turbine injector was analyzed. The Eulerian Lagrange method was adopted to simulate the gas–liquid–solid flow. The Mansouri’s model was applied to estimate the injector erosion. The predicted erosion results were in accord with field erosion photographs. In particular, the asymmetrical erosion distribution on the needle surface was physically reproduced. With the sediment particle size increasing from 0.05 mm, the needle erosion rate decreased, while the nozzle casing erosion rate increased dramatically. In order to clarify this tendency, the characteristics of the three-phase flow were analyzed. Interestingly, the results show that with the rise in particle size, the separation of particles and water streamlines became more serious in the contraction section of the nozzle mouth. Consequently, it caused the enhancement of erosion of the nozzle surfaces and weakened the erosion of the needle surfaces. Significant engineering insights may be provided for weakening Pelton injector erosion with needle guides in the current study.

Suggested Citation

  • Jie Liu & Yilin Zhu & Quanwei Liang & Yexiang Xiao & Zhengshu Liu & Haijun Li & Jian Ye & Nianhao Yang & Haifeng Deng & Qingpin Du, 2024. "Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size," Energies, MDPI, vol. 17(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1635-:d:1366151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    2. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    3. Jean Decaix & Cécile Münch-Alligné, 2022. "Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox," Energies, MDPI, vol. 15(19), pages 1-13, October.
    4. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    5. Li, Lihao & Lu, Jiaxing & Gong, Yong & Zhao, Haoyu & Liu, Xiaobing & Zhu, Baoshan, 2024. "Sediment erosion characteristics of Pelton turbine runner: Effects of sediment concentration and diameter," Renewable Energy, Elsevier, vol. 220(C).
    6. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    7. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    8. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    9. Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
    10. Yexiang Xiao & Bao Guo & Soo-Hwang Ahn & Yongyao Luo & Zhengwei Wang & Guangtai Shi & Yanhao Li, 2019. "Slurry Flow and Erosion Prediction in a Centrifugal Pump after Long-Term Operation," Energies, MDPI, vol. 12(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1635-:d:1366151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.