IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1635-d1366151.html
   My bibliography  Save this article

Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size

Author

Listed:
  • Jie Liu

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Yilin Zhu

    (State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Quanwei Liang

    (Dongfang Electric Machinery Co., Ltd., Deyang 618000, China)

  • Yexiang Xiao

    (State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Zhengshu Liu

    (China Three Gorges Tibet Energy Investment Corporation, Chengdu 610095, China)

  • Haijun Li

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Jian Ye

    (China Three Gorges Tibet Energy Investment Corporation, Chengdu 610095, China)

  • Nianhao Yang

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Haifeng Deng

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

  • Qingpin Du

    (China Three Gorges Construction Engineering Corporation, Chengdu 610095, China)

Abstract

The sediment erosion of Pelton turbine components is a major challenge in the operation and development of high-head water resources, especially in mountainous areas with high sediment yield. In this paper, a study using numerical simulation was conducted with different sediment particle sizes in the fine sand range. And the erosion mechanism of the Pelton turbine injector was analyzed. The Eulerian Lagrange method was adopted to simulate the gas–liquid–solid flow. The Mansouri’s model was applied to estimate the injector erosion. The predicted erosion results were in accord with field erosion photographs. In particular, the asymmetrical erosion distribution on the needle surface was physically reproduced. With the sediment particle size increasing from 0.05 mm, the needle erosion rate decreased, while the nozzle casing erosion rate increased dramatically. In order to clarify this tendency, the characteristics of the three-phase flow were analyzed. Interestingly, the results show that with the rise in particle size, the separation of particles and water streamlines became more serious in the contraction section of the nozzle mouth. Consequently, it caused the enhancement of erosion of the nozzle surfaces and weakened the erosion of the needle surfaces. Significant engineering insights may be provided for weakening Pelton injector erosion with needle guides in the current study.

Suggested Citation

  • Jie Liu & Yilin Zhu & Quanwei Liang & Yexiang Xiao & Zhengshu Liu & Haijun Li & Jian Ye & Nianhao Yang & Haifeng Deng & Qingpin Du, 2024. "Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size," Energies, MDPI, vol. 17(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1635-:d:1366151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    2. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    3. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    4. Padhy, M.K. & Saini, R.P., 2009. "Effect of size and concentration of silt particles on erosion of Pelton turbine buckets," Energy, Elsevier, vol. 34(10), pages 1477-1483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Zhang & Chao Wang & Qianhe Tian & Quanwei Liang & Yilin Zhu & Yexiang Xiao & Yong Bai & Zhaoning Wang & Hengte Zhou & Xianwu Luo, 2024. "Effect of Injector Needle Tip Shape on Jet Flow for Pelton Turbine," Energies, MDPI, vol. 18(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    2. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    3. Wang, Zhiyuan & Qian, Zhongdong, 2017. "Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump," Energy, Elsevier, vol. 123(C), pages 36-46.
    4. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    5. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    6. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    7. Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
    8. Kramer, Matthias & Terheiden, Kristina & Wieprecht, Silke, 2015. "Optimized design of impulse turbines in the micro-hydro sector concerning air detrainment processes," Energy, Elsevier, vol. 93(P2), pages 2604-2613.
    9. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    10. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    11. Ameur, Houari & Bouzit, Mohamed, 2013. "Power consumption for stirring shear thinning fluids by two-blade impeller," Energy, Elsevier, vol. 50(C), pages 326-332.
    12. Jing Dong & Zhongdong Qian & Biraj Singh Thapa & Bhola Thapa & Zhiwei Guo, 2019. "Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion," Energies, MDPI, vol. 12(1), pages 1-22, January.
    13. George Aggidis & Audrius Židonis & Luke Burtenshaw & Marc Dubois & Stephen Orritt & Dominic Pickston & George Prigov & Luke Wilmot, 2023. "Development of a Novel High Head Impulse Hydro Turbine," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
    14. Padhy, M.K. & Saini, R.P., 2012. "Study of silt erosion mechanism in Pelton turbine buckets," Energy, Elsevier, vol. 39(1), pages 286-293.
    15. Hauer, C. & Wagner, B. & Aigner, J. & Holzapfel, P. & Flödl, P. & Liedermann, M. & Tritthart, M. & Sindelar, C. & Pulg, U. & Klösch, M. & Haimann, M. & Donnum, B.O. & Stickler, M. & Habersack, H., 2018. "State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 40-55.
    16. Masoodi, Junaid H. & Harmain, G.A., 2017. "A methodology for assessment of erosive wear on a Francis turbine runner," Energy, Elsevier, vol. 118(C), pages 644-657.
    17. Padhy, M.K. & Saini, R.P., 2011. "Study of silt erosion on performance of a Pelton turbine," Energy, Elsevier, vol. 36(1), pages 141-147.
    18. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    19. Baig Mirza Umar & Zhengwei Wang & Sailesh Chitrakar & Bhola Thapa & Xingxing Huang & Ravi Poudel & Aaditya Karna, 2024. "Experimental Erosion Flow Pattern Study of Pelton Runner Buckets Using a Non-Recirculating Test Rig," Energies, MDPI, vol. 17(16), pages 1-13, August.
    20. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1635-:d:1366151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.