IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017445.html
   My bibliography  Save this article

Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow

Author

Listed:
  • Khan, Rehan
  • Ullah, Sati
  • Qahtani, Faez
  • Pao, William
  • Talha, Tariq

Abstract

Sediment erosion-corrosion is a critical threat to the safe operation of hydro turbines, which may lead to component damage or even complete failure of the turbine. A lack of understanding of the mechanism of sand erosion is a barrier to developing an erosion model to exactly quantify sand erosion in the Pelton turbine. The preeminent objectives of this research work are to determine parameters that influence sand erosion, identify erosion-prone areas in Pelton turbine buckets, quantify the erosive wear experimentally and numerically, determine the impact of erosive wear, and analyze the microscopic mechanism of erosion. Five Pelton buckets made of aluminum, carbon steel, stainless steel, polylactic acid (PLA), and acrylonitrile butadiene styrene (ABS) were used to perform erosion experiments under two-phase, solid-liquid flow conditions. Multi-layer paint modelling technique was used to identify erosion-prone areas. Optical profilometry was used to perform surface roughness analysis and Scanning Electron Microscopy was used to evaluate the microscopic degree of damage due to erosive wear in the Pelton bucket. Mass loss and thickness reduction analyses were performed to quantify the erosive wear. The erosion rates of aluminum, carbon steel, stainless steel, and ABS were 190 %, 86.73 %, 48.79 %, and 5.61 % higher, respectively, compared to PLA and both PLA and ABS demonstrated exceptional resistance.

Suggested Citation

  • Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017445
    DOI: 10.1016/j.renene.2023.119829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.