IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2725-d1663324.html
   My bibliography  Save this article

Efficiency Testing of Pelton Turbines with Artificial Defects—Part 2: Needles and Seat Rings

Author

Listed:
  • Florian Fahrni

    (Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Thomas Staubli

    (Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

  • Ernesto Casartelli

    (Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland)

Abstract

The erosion of Pelton turbine components in mountainous areas with high sediment input is a major challenge for energy- and cost-efficient operation. Quantitative data on possible efficiency losses associated with local damage are needed. A systematic experimental study was carried out on a model turbine to determine the efficiency losses caused by damaged needles and seat rings. For this purpose, artificial patterns of erosion-like damage were generated on the surfaces of needles and seat rings. These patterns were gradually deepened, and hill charts were measured repeatedly. The combination of needle and seat ring defects was also studied, and the finding is that superimposing the individual efficiency losses of the needle and seat ring resulted in the same efficiency loss measured for both damaged parts. The results of the measurement campaign show that damaged needles should be replaced at an early stage of deterioration, as efficiency losses can quickly add up to several percent and become unacceptable at partial load operations of the turbines.

Suggested Citation

  • Florian Fahrni & Thomas Staubli & Ernesto Casartelli, 2025. "Efficiency Testing of Pelton Turbines with Artificial Defects—Part 2: Needles and Seat Rings," Energies, MDPI, vol. 18(11), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2725-:d:1663324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florian Fahrni & Thomas Staubli & Ernesto Casartelli, 2025. "Efficiency Testing of Pelton Turbines with Artificial Defects—Part 1: Buckets," Energies, MDPI, vol. 18(11), pages 1-22, May.
    2. Messa, Gianandrea Vittorio & Mandelli, Simone & Malavasi, Stefano, 2019. "Hydro-abrasive erosion in Pelton turbine injectors: A numerical study," Renewable Energy, Elsevier, vol. 130(C), pages 474-488.
    3. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yexiang & Guo, Bao & Rai, Anant Kumar & Liu, Jie & Liang, Quanwei & Zhang, Jin, 2022. "Analysis of hydro-abrasive erosion in Pelton buckets using a Eulerian-Lagrangian approach," Renewable Energy, Elsevier, vol. 197(C), pages 472-485.
    2. Li, Lihao & Lu, Jiaxing & Gong, Yong & Zhao, Haoyu & Liu, Xiaobing & Zhu, Baoshan, 2024. "Sediment erosion characteristics of Pelton turbine runner: Effects of sediment concentration and diameter," Renewable Energy, Elsevier, vol. 220(C).
    3. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Liang, Quanwei & Liu, Jie, 2021. "Analysis of the air-water-sediment flow behavior in Pelton buckets using a Eulerian-Lagrangian approach," Energy, Elsevier, vol. 218(C).
    4. Khan, Rehan & Ullah, Sati & Qahtani, Faez & Pao, William & Talha, Tariq, 2024. "Experimental and numerical investigation of hydro-abrasive erosion in the Pelton turbine buckets for multiphase flow," Renewable Energy, Elsevier, vol. 222(C).
    5. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    6. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.
    7. Florian Fahrni & Thomas Staubli & Ernesto Casartelli, 2025. "Efficiency Testing of Pelton Turbines with Artificial Defects—Part 1: Buckets," Energies, MDPI, vol. 18(11), pages 1-22, May.
    8. Leguizamón, Sebastián & Alimirzazadeh, Siamak & Jahanbakhsh, Ebrahim & Avellan, François, 2020. "Multiscale simulation of erosive wear in a prototype-scale Pelton runner," Renewable Energy, Elsevier, vol. 151(C), pages 204-215.
    9. Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
    10. Wang, Xiao-Dong & Wang, Wen-Quan & Zhang, Chang-Bing & Xu, Yong, 2025. "Old wine in a new bottle: Energy loss evaluation in a six-nozzle Pelton turbine with entropy production theory," Energy, Elsevier, vol. 319(C).
    11. Jean Decaix & Cécile Münch-Alligné, 2022. "Geometry, Mesh and Numerical Scheme Influencing the Simulation of a Pelton Jet with the OpenFOAM Toolbox," Energies, MDPI, vol. 15(19), pages 1-13, October.
    12. Chitrakar, Sailesh & Solemslie, Bjørn Winther & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2020. "Review on numerical techniques applied in impulse hydro turbines," Renewable Energy, Elsevier, vol. 159(C), pages 843-859.
    13. Jie Liu & Yilin Zhu & Quanwei Liang & Yexiang Xiao & Zhengshu Liu & Haijun Li & Jian Ye & Nianhao Yang & Haifeng Deng & Qingpin Du, 2024. "Analysis of Sediment Erosion in Pelton Nozzles and Needles Affected by Particle Size," Energies, MDPI, vol. 17(7), pages 1-16, March.
    14. Yexiang Xiao & Bao Guo & Soo-Hwang Ahn & Yongyao Luo & Zhengwei Wang & Guangtai Shi & Yanhao Li, 2019. "Slurry Flow and Erosion Prediction in a Centrifugal Pump after Long-Term Operation," Energies, MDPI, vol. 12(8), pages 1-17, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2725-:d:1663324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.